Rezultatele căutări pentru: Ependimom

Un studiu randomizat privind supraviețuirea fără boală ulterioară bolii cu vâscul adjuvant față de etoposidul oral la pacienții cu osteosarcom

Abstract

Context . Osteosarcomul este o tumoare osoasă foarte malignă. După cea de-a doua recidivă, rata de supraviețuire fără boală  (PRDFS) după 12 luni scade sub 20%. Etoposidul oral este adesea utilizat în practica clinică după intervenția chirurgicală ca adjuvant în afara oricărui protocol și  doar cu dovezi limitate de supraviețuire îmbunătățită. Viscum album fermentatum Pini ( Viscum ) este un extract de vâsc de plante cultivate pe pin pentru injecție subcutanată (sc) cu activitate imunomodulatoare.

Metode . Incurajati de constatarile preliminare, am efectuat un studiu in care pacientii cu osteosarcom indemnati de boli dupa a doua recadere metastatica au fost repartizati aleatoriu la Viscum sc sau oral Etoposide. Scopul nostru a fost compararea ratelor PRDFS pe 12 luni cu un grup de control istoric echivalent.

 Rezultate . Douăzeci de pacienți au fost înrolați, cu o vârstă medie de 34 de ani (intervalul 11-65) și un timp de urmărire mediană de 38,5 luni (3-73). PRDSF median este în prezent de 4 luni (1-47) în etoposidă și 39 de luni (2-73) în grupul Viscum. Pacienții care au primit Viscum au raportat o calitate superioară a vieții datorită toxicității mai scăzute. 

Concluzie . Viscum arată promisiunea ca tratament adjuvant în prelungirea PRDFS după a doua recădere la pacienții cu osteosarcom. Este necesar un studiu mai amplu pentru a determina în mod definitiv mecanismele de eficacitate și imunomodulatoare ale terapiei Viscum la pacienții cu osteosarcom.

1. Introducere

Osteosarcomul este un neoplasm malign agresiv, pentru care chimioterapia neoadjuvantă cu cele patru medicamente cele mai eficiente (doxorubicină, metotrexat, cisplatină și ifosfamidă) a îmbunătățit rata de supraviețuire fără boală de 5 ani (DFS) de la 10% la 60%. Tratamentul pentru pacienții care recidivează, fie local, fie cu metastaze îndepărtate, în principal în plămâni, este în principal chirurgical. Prognosticul este slab, cu supraviețuire postrecadere pe termen lung <20%. Totuși, majoritatea pacienților recidivă a doua oară, în principal în plămâni (40%, a se vedea [ 1 ]). Fagioli și colab. 2 ] au raportat o rată a supravietuire fara boala DFS de 3 ani de 12% după cea de-a doua recădere la pacienții care au primit intervenții chirurgicale și chimioterapice, cu 80% dintre pacienți re-înlăturați în decurs de 1 an. În studiul lui Bacci și colab. 3 ], la 235 de pacienți cu osteosarcom care au recidivat după chimioterapie neoadjuvană, 120 (51%) au prezentat oa doua recădere cu un interval median între a doua și a treia recădere de 11,8 luni. Dintre cei 120 de pacienți, numai 14 (11,6%) au obținut remisie prelungită. Rolul chimioterapiei de linia a doua pentru osteosarcomul recurent este mult mai bine definit decât cel al chirurgiei și nu există un regim acceptat standard.

Pe lângă intervenția chirurgicală, au fost utilizate diferite medicamente (ifosfamidă, ciclofosfamidă, etoposidă, metotrexat, vinorelbină și gemcitabină plus docetaxel) ca postoperator de tratament „adjuvant” și, eventual, ca monoterapie pentru boala inoperabilă, cu rezultate limitate [ 4 ]. O analiză retrospectivă recentă (iulie 2013) asupra a 110 pacienți cu osteosarcom recidivat de la Spitalul St. Jude a confirmat că intervenția chirurgicală la recadere este esențială pentru supraviețuire, iar chimioterapia poate doar să încetinească progresia bolii la pacienții fără o remisiune completă  5 ].

Etoposidul este un inhibitor de topoizomerază II utilizat în principal intravenos în tratamentul mai multor tumori (de exemplu, limfoame, cancer pulmonar, cancer ovarian și sarcom Ewing), atât în ​​asociere, cât și în monoterapie. Unele protocoale de osteosarcom utilizează Etoposid iv în scheme neoadjuvante utilizate pentru cei care nu răspund în tratamentul postoperator cu scopul de intensificare (adică [ 6 ]). În singurul studiu privind osteosarcomul pe cale orală de Etoposid 50 mg / m2 / zi, timp de 14 zile ca monoterapie, Kebudi și colab. 7 ] au raportat o rată de răspuns de 15% (RR) la pacienții pediatrici recăderi. Sandri și colab. 8 ] au raportat o utilizare reușită a etoposidului oral la 50 mg / m2 la copiii cu ependimomi recurenți, prezentând un RR de 40%. Administrarea orală de etoposidă este bine tolerată, numai cu reacții adverse ușoare la medicament, cum ar fi greața, leucopenia și alopecia. Cu toate acestea, toxicitatea hematologică este una dintre principalele toxicități limitative la chimioterapia de a doua sau a treia linie la acești pacienți puternic pre-tratați. Etoposidul nu poate fi administrat pentru o perioadă mai lungă datorită riscului malignității secundare hematologice.

Combinatul de vasc este utilizat pe scară largă la pacienții cu cancer (> 60% dintre pacienții cu tumori din Germania și Elveția). Este derivat din Viscum album L., plantă semiparazită, care este clasificată în trei subspecii ( vâscul de copac de frunziș , vâsc de pin și vâsc de brad ), fiecare cu arborele gazdă (miez, stejar, brad, pin și brad) . Efectele sale sunt similare cu cele ale altor modificatori de răspuns biologic în direcționarea sistemului imunitar [ 9 – 15 ], (revizuire în [ 16 ]). Componentele principale ale întregului extract de plante sunt lectinele de vâsc I, II și III și șase viscotoxine și polizaharide. Lectinele au demonstrat activitate citostatică și imunomodulatoare in vitro, în timp ce viscotoxinele au fost raportate ca având activitate citotoxică. Polizaharidele au demonstrat activități imunomodulatoare, adică o creștere a activității NK [ 17 , 18 ]. Extractul vegetal total este un imunostimulant (creșterea celulelor NK, limfocitelor T și macrofagelor) și are activitate apoptotică in vitro [ 19 ] și in vivo [ 20 ].

Viscum album fermentatum Pini ( Viscum , echivalentul lui Iscador P, Weleda AG, Arlesheim, Elveția) este una dintre cele mai multe preparate comerciale pentru albumul Viscum și comercializată încă din 1917. Administrate ca injecție subcutanată sunt bine tolerate la nivel local și sistemic. Preparatele Viscum au fost aplicate experimental, de asemenea, intravenos [ 21 ], dar injecția subcutanată este singura formă de aplicare autorizată (exceptată de extractele vâscilor potențate homeopatic ABNOBAviscum D6 până la D30).

Studiul raportat aici examinează supraviețuirea post-eliminării bolii (PRDFS) la pacienții cu risc crescut de recădere ulterioară după o intervenție chirurgicală pentru o a doua recidivă care primește fie Etoposide, fie Viscum . Scopul nostru este de a compara rata PRDFS de 12 luni a fiecăruia dintre cele două brațe de studiu cu o cohorta istorică de pacienți. Un raport preliminar al primilor zece pacienți ai acestui studiu a fost deja publicat anterior [ 22 ]. Aici, prezentăm rezultatele clinice pentru toți pacienții.

2. Materiale și metode

Acesta este un studiu prospectiv, randomizat, deschis, realizat în conformitate cu Declarația de la Helsinki și aprobat de comitetul de etică al Istituto Ortopedico Rizzoli (IOR), Bologna și de autoritățile italiene competente. Toți pacienții au primit consimțământul scris în scris înainte de intrarea în studiu. Studiul este înregistrat în registrul UE privind studiile clinice, numărul EudraCT 2006-002676-18 .

2.1. pacienţii

Criteriile de includere au inclus diagnosticul confirmat histologic al osteosarcomului sau al sarcomului celular cu arbore al osului după oa doua recădere; absența metastazelor și recăderii locale după intervenția chirurgicală; vârsta ≥10 ani; ECOG ≤2; funcția adecvată a măduvei osoase (adică neutrofile absolute periferice> 1500, trombocite> 100.000); și parametrii suplimentari de laborator limitați la bilirubină <2, creatinină <1,5x normală și un consimțământ informat semnat. Criteriile de excludere au fost sarcoamele osoase de alt tip histologic sau orice alt malign înainte de studiu; lipsa criteriilor de staționare; ultimul tratament antineoplazic primit cu 30 de zile înainte de intrarea în studiu; tratamentul cu extract de album deEtoposide sau Viscum înainte de intrarea în studiu; tratamentul concomitent cu medicamente care au fie proprietăți imunostimulatoare, fie imunosupresoare; sarcinii.

2.2. Desemnarea pacientului

Pacientii au fost randomizati 1: 1 pentru a primi fie Etoposide sau Viscum . Randomizarea a fost solicitată prin fax și efectuată centralizat la Institutul de Cercetare Clinică din Berlin, conform unei liste de randomizări nerestricționate, creată de un statistician de la IOR, care nu a fost implicat în niciun alt aspect al studiului.

2.3. medicamente și tratament

Extrasul din albumul Viscum aplicat în acest studiu este un medicament aprobat și are o autorizație de introducere pe piață sub denumirea „Iscador P” (Weleda AG, Arlesheim, Elveția) în Germania, Elveția și Austria. În Italia, este înregistrată ca remediu homeopatic sub numele Viscum album fermentatum Pini .Potrivit fabricantului, acest extract de vasc conține lectine de vâsc de până la 40 ng / ml în doza de 20 mg din Seria II (comunicare personală). Activitatea imunomodulatoare a acestui preparat a fost demonstrată anterior cu privire la o creștere a citotoxicității celulelor TNK- α și IL-6 [ 23 ], a celulelor naturale ucigașe (NK) [ 24 ], activarea celulelor helper CD4 + și a monocitelor [ 25 ] a celulelor dendritice [ 26 ] și activarea macrofagelor [ 27 ]. În studiul actual, parametrii imunologici, inclusiv limfocitele T NK, IL-2, IL-4, IL-12, IL-15, γ- IFN și IP-10, au fost determinate trimestrial, dar vor fi prezentate în altă parte.

Viscum album extract a fost injectat subcutanat (abdominale) de 3 ori / saptamana. Doza inițială a fost de 2 cutii cu Seria 0 (0,01, 0,1 și 1 mg) cu 14 flacoane împreună, urmate de 2 cutii din seria I (0,1, 1 și 10 mg) cu 14 flacoane; și tratamentul ulterior cu seria II (1, 10 și 20 mg) continuu până în a 12-a lună. Reacțiile locale la locul injectării (roșeață, umflături ușoare și mâncărime) cu diametrul mai mare de 5 cm au fost urmate de reducerea dozei, adică prin injectarea unei jumătăți de fiolă (eliminarea restului).

Tratamentul cu tablete orale de Etoposid a fost efectuat la doza de 50 mg / m2 pe zi timp de 21 de zile, urmată de o odihnă de o săptămână. Această schemă a fost repetată pentru 6 cicluri. Dacă a apărut toxicitate hematologică G3 / G4, în conformitate cu planul de studiu ciclul a fost scurtat la 14 zile. Dacă neutrofilele au fost sub 500 μl , G-CSF ar putea fi administrată până când numărul a ajuns la 1000 / μL . Dacă pacienții au prezentat toxicitate G3 / G4 în 2 cicluri, doza totală de etoposidă a fost redusă la 50%.Pacienții care au prezentat toxicitate G3 / G4 în următorul ciclu, în ciuda reducerii dozei, au fost retrași de la tratament.

În tabelul 1 sunt prezentate examinările de așteptare efectuate la screening (luna -0,5) și pe parcursul studiului la momentul inițial (luna 0) și la 3, 6, 9 și 12 luni după începerea tratamentului.

tabelul 1

Program de evenimente pe parcursul studiului.

Lună -0.5 0 1 2 3 6 a 12 a
Consimțământ informat X
Criterii de includere / excludere X
Antecedente medicale / evenimente adverse X X X X X X X X
Examinare fizică* X X X X X X X X
QoL (EORTC / POQOL) X X X X X X
CBC, profil biochimic ** X X X
Analiza urinei X X
Test de sarcina*** X
Plămânii CT X X X X X
Radiografie osoasă sau CT X X X
Scanarea osoasă totală X X
Ultrasunete / CT abdomen X X X
Medicamentul dispensează X X X X X X
Întoarcerea medicamentelor neutilizate X X X X X X
Evaluarea imunologică X X X X X

* Full PE pe luna -0,5 și la vizita de ieșire; examinarea constatărilor legate de boală numai la alte vizite.

** Cu două săptămâni înainte de screening sau în perioada de referință.

*** Pentru femeile din perioada premenopauzei.

o Durata tratamentului pentru Viscum : 12 luni; pentru Etoposidă: 6 luni.

2.4. Endpoints

Obiectivul primar al studiului a fost PRDFS după cea de-a doua recădere la pacienții cu osteosarcom, evaluat la fiecare vizită prin radiografie sau tomografie computerizată (CT) a situsului primar al tumorii (oasele) și CT a plămânului și suplimentar prin examinarea cu ultrasunete sau CT a abdomenului după 6 luni de tratament. Parametrul primar de eficacitate a parametrilor PRDFS a fost definit ca proporția pacienților dintr-un braț de tratament dat fără nici un semn de recădere după 12 luni de tratament cu Viscumsau Etoposid. Deoarece rata PRDFS fără tratament este cunoscută ca fiind de aproximativ 12% din studiile retrospective [ 2 , 3 ], scopul acestui studiu a fost de a evalua dacă oricare dintre cele două tratamente ar putea avea potențialul de a crește rata PRDFS la aproximativ 40% după intervenția chirurgicală după a doua recidivă. Pacienții sunt urmăriți după sfârșitul studiului, iar statutul PRDFS este actualizat în mod continuu. Până în iulie 2013 au fost documentate perioade de urmărire de până la 73 de luni.

Al doilea punct final a fost calitatea vieții (QoL) în ambele brațe, măsurată prin chestionarul de bază al Organizației Europene pentru Cercetare și Tratament al Cancerului (EORTC QOL-C30) la adulți sau prin Modulul pediatric al calității vieții de cancer Acute Version 3.0 (PedsQL ) la pacienții <18 ani, respectiv.EORTC QLQ-C30 constă din 30 de întrebări cu patru categorii de răspuns (28 întrebări) sau șapte (2 întrebări) sub formă de scale Likert. Întrebările sunt subsumate la cinci scale de funcționare (fizic, rol, emoțional, cognitiv și social), trei scale de simptome (oboseală, greață / vărsături și durere), șase scale singulare (dispnee, tulburări ale somnului, , diaree și impact financiar) și scala globală de sănătate / calitate a vieții, care poate fi considerată indice general QoL. În ceea ce privește PedsQL, a existat doar un pacient cu etopozidă cu date post-liniare și, prin urmare, acest chestionar nu este luat în considerare aici.

Obiectivul de siguranță al studiului a fost tolerabilitatea tratamentelor cu Etoposide și Viscum . Pentru aceasta, la fiecare vizită pacienților li s-au cerut evenimente adverse care au fost înregistrate conform criteriilor comune de toxicitate pentru evenimentele adverse (CTCAE) și evaluate pentru relația lor cu medicamentele de studiu.

2.5. Estimarea mărimii eșantionului

Dimensiunea eșantionului necesară pentru a demonstra o superioritate statistică, bazată pe ipoteza că unul sau ambele medicamente pot îmbunătăți rata PRDFS documentată istoric de 12% până la aproximativ 35%, a fost estimată a necesita 18 pacienți pe braț, presupunând un nivel de eroare alfa 5 % și o putere de 81%.Pe baza experienței noastre, nu am anticipat abandonarea. Datorită eșecului recrutării, studiul a fost reziliat timpuriu prin modificarea protocolului după includerea a 20 de pacienți (11 Etoposide, 9 Viscum ).

2.6. Metode statistice

Comparația dintre brațele de tratament a fost evaluată folosind media aritmetică, abaterea standard, minimul, primul și al treilea quartel, media și maximul pentru datele continue și tabelele de contingență care prezintă frecvențe absolute și relative pentru datele categorice. Nu s-au efectuat teste pentru diferențe între grupurile de tratament pentru aceste variabile de bază, deoarece valorile P mai mici de 5% reprezintă doar sansa de așteptat 1 din 20 de a găsi o diferență în cazul în care niciuna nu există în realitate.

Analiza parametrilor de eficacitate a urmat abordarea intenției de tratament; adică toți pacienții au fost incluși în analiză ca fiind randomizați. Toate analizele de eficacitate au fost efectuate separat pentru fiecare dintre cele două grupuri de tratament.

Evaluarea ratei primare PRDFS a fost efectuată ca o comparație a ratei PRDFS de 12 luni cu valoarea fixă ​​de 12% (adică rata medie PRDFS după recaderea a doua în grupurile de control istoric) folosind un test binomial exact [ 28 ].

Un model mixt liniar a fost utilizat pentru a analiza parametrii QoL ai EORTC QLQ-C30 ca diferență față de valoarea inițială, incluzând valoarea inițială a fiecărui parametru QoL, grupul de tratament și vizita ca factori independenți și studierea pacienților ca factor aleatoriu. Dependența dintre vizitele succesive în cadrul fiecărui pacient a fost calculată folosind o matrice de covarianță simetrică compusă.

Toate testele au fost efectuate la un nivel de eroare alfa de 5%; datorită caracterului exploratoriu al acestui studiu, nu a fost aplicată nicio ajustare pentru teste multiple. Împreună cu valorile P , sunt raportate intervale de încredere de 95%.

3. Rezultate

Din iunie 2007 până în iulie 2011, 20 de pacienți au fost înscriși. Unsprezece pacienți au fost repartizați aleatoriu în brațul cu Etoposid și nouă la brațul Viscum . Histologia a confirmat osteosarcomul la toți pacienții; toti pacientii au suferit o interventie chirurgicala pentru oa doua recidiva a bolii in plamani si doi in sold pentru recidiva locala a localizarii primitive a femurului proximal. O a doua chimioterapie a fost deja aplicată la 5 (55,5%) (brațul Viscum ) și 4 (36,4%) (brațul cu etopozid) după prima recădere, respectiv ultima cu aproximativ trei ani înainte de intrarea în studiu.

Raportul dintre bărbați și femei a fost de 11: 9; vârsta medie a fost de 33,9 ani (intervalul 11-65). DFS mediană de la prima intervenție chirurgicală la prima recădere și de la recaderea de la prima la a doua a fost de 19,1 (2-40) și 21,1 (3-82) luni în brațul Viscum și 26,9 (14-37) și 15,6 (3-40) Etopozid arm, respectiv.Alte caracteristici sociodemografice, boli și caracteristicile inițiale ale tratamentului sunt prezentate în tabelele din tabelele 2 și 3 .

tabel 2

Caracteristici sociodemografice și generale de sănătate.

Caracteristicile pacientului Frecvență (procentaj) sau
medie (interval)
Viscum n = 9 Etoposida n = 11
Sex
Masculin 4 (44,4) 7 (63,6)
Femeie 5 (55,6) 4 (39,4)
Vârsta (ani) 28 (18-48) 39 (11-66)
Grup etnic
caucazian 8 (88,9) 11 (100)
asiatic 1 (11,1)
Statusul familiei
Single / divorțat 8 (88,9) 6 (54,5)
Casatorit / in parteneriat 1 (11,1) 5 (45,5)
Educatie inalta
Formare profesională 5 (55,6) 7 (63,6)
Absolventa / student universitar 4 (44,4) 4 (36,5)
ECOG
0 3 (33,3) 6 (54,6)
1 6 (66,7) 5 (45,4)
≥2
Bolile concomitente 1 (11,1) 3 (27,3)
Sindromul Paget 1 (11,1)
HCV 1 (11,1)
Hiperparatiroidismul primar 1 (11,1)
Tubulopatia renală 1 (11,1)
Medicament curent obișnuit 5 (55,6) 6 (54,6)
Semne și simptome curente
Durere 2 (22,2) 1 (9.1)
Pierdere în greutate 2 (22,2) 1 (9.1)
Tuse 1 (11,1) 1 (9.1)
Dispneea 1 (11,1)

Tabelul 3

Bolile și caracteristicile de bază specifice tratamentului.

Caracteristicile bolii tumorale Frecvență (procentaj) sau medie (min-max)
Viscum n = 9 Etoposida n = 11
Timpul de la diagnosticarea primară (ani) 4,0 (1,5-10,5) 3,7 (1,4-7,2)
DFS 1 ° interval (luni) 22,3 (2,9-43,3) 27,9 (14,5-39,4)
DFS 2 ° interval (luni) 22,9 (3,0-82,1) 14,9 (1,8-47,4)
Timp de recadere la 2 ° (săptămâni) 13,9 (0,9-76,6) 7,6 (1,9-24,6)
osteosarcom
Chondrosarcomatous 1 (11,1) 2 (18,2)
osteoblaste 4 (44,4) 5 (45,5)
Sarcina celulei arterelor 0 1 (9.1)
Nu este specificat altfel 4 (44,4) 3 (27,3)
Staging (Enneking)
I (IB) 0 1 (9.1)
II (II A, II B) 6 (66,7) 8 (72,7)
III (III, III A, III B) 3 (33,3) 2 (18,2)
Clasificarea
2 8 (88,9) 11 (100)
3 1 (11,1)
4
Metastazele prezente 9 (100) 11 (100)
A doua chimioterapie după prima recidivă 5 (55,6) 4 (36,4)
Timpul de la ultima chimioterapie (ani) 3,0 (0,6-10,5) 2,8 (0,4-7,2)
Radioterapie
Frecvența intervențiilor chirurgicale
3 5 (55,6) 9 (81,8)
4 3 (33,3) 1 (9.1)
5 1 (11,1) 1 (9.1)
Timpul de la ultima operație (luni) 1,5 (0,7-2,0) 2,2 (1,2-5,9)

După un an de tratament, rata PRDFS în brațul Viscum a fost de 55,6%, comparativ cu rata istorică de 12%: P = 0,0041; 95% CI (21,2%; 86,3%) (cinci din nouă pacienți) și a fost de 27,3%, P = 0,2724; 95% CI (6,0%; 61,0%) pentru brațul cu etopozid (trei din unsprezece pacienți) (vezi figura 1 ).

Un fișier extern care conține o imagine, o ilustrație etc. Numele obiectului este ECAM2014-210198.001.jpg

Rata supravietuire fara boala PRDFS și intervalele de încredere precise de 95% după 12 luni de tratament cu Viscum sau Etoposid.Linia orizontală reprezintă rata PRDFS de 12% derivată din controalele istorice. Prin trecerea liniei de 12%, intervalul de încredere Etoposide indică faptul că acest tratament nu poate fi diferențiat statistic de rata istorică, în timp ce pentru Viscum se poate deduce o diferență semnificativă.

Până în iulie 2013, în bratul Viscum mediana PRDFS (inclusiv datele cenzurate) este de 39 luni (intervalul 2-73 luni). Unul din 6 pacienți a recidivat local în zona chirurgiei anterioare (pelvis). În bratul cu Etoposid median PRDFS este de 4 luni (1-47 luni) (vezi Figura 2 ). Un pacient înscris în bratul Etoposid a refuzat să accepte Etoposid după randomizare și sa retras din studiu și a luat în loc Viscum ; cu toate acestea, urmând abordarea intenției de a trata, a fost analizat ca atribuit lui Etoposide. Un alt pacient a recidivat după trei luni de Etoposid; după o intervenție chirurgicală pentru a treia boală recidivantă, a trecut la Viscum timp de 2 ani. El este încă lipsit de boală de la recaderea a 3-a după 59 de luni. Doi pacienți din brațul Viscum după un an de tratament cu Viscum au decis să continue terapia cu Viscum cel puțin încă un an spontan.

Un fișier extern care conține o imagine, o ilustrație etc. Numele obiectului este ECAM2014-210198.002.jpg

Graficul Kaplan-Meier al cursului PRDFS pentru pacienții cu Viscum și etoposid, respectiv, pe durata studiului și în timpul urmăririi. Linia verticală indică sfârșitul perioadei de încercare. Ultimele date sunt din iulie 2013 și sunt actualizate în mod continuu.

În ceea ce privește evaluarea calității vieții, tendința a fost pozitivă pentru tratamentul Viscum ( Tabelul 4 );acest lucru se poate observa în special în scara globală a calității, în scări funcționale „funcționare fizică” și „funcționare socială”, iar pentru simptomele „oboseală”, „durere”, „dispnee” și „dificultăți financiare” QLQ-C30. O îmbunătățire similară a lui Etoposide nu a putut fi observată decât pentru „funcționarea socială”. Pe de altă parte, trebuie observate deteriorări pentru „greață / vărsături” și „durere”.

Tabelul 4

Schimbări medii față de linia de bază pentru scările QoL ale EORTC QLQ-C30.

Scara EORTC QLQ-C30 Modificări estimate * 95% CI P -value
Funcționarea fizică
Viscum 7.30 [0,15; 14.44] 0,046
etoposidului -2.45 [-8.93; 4,03] 0.430
Funcționarea rolurilor
Viscum 3,80 [-7.94; 15.54] 0.827
etoposidului -6.31 [-18.28; 5,65] .508
Funcționarea emoțională
Viscum -5.98 [-10.58; -1.37] 0.014
etoposidului -2.48 [-9.84; 4.87] 0.481
Funcționare cognitivă
Viscum -0.92 [-6.49; 4,65] 0.734
etoposidului -5.94 [-12.19; 0,31] 0.061
Funcționarea socială
Viscum 11.76 [4,64; 18.88] 0.003
etoposidului 4,78 [0,51; 9.05] 0.031
Global health / QoL
Viscum 11.17 [2,62; 19,72] 0.013
etoposidului 3,51 [-3.51; 10,54] 0.301
Oboseală
Viscum -9.85 [-16.31; -3.38] 0,005
etoposidului 1.13 [-5.72; 7,99] 0,73
Greață / vărsături
Viscum 0,43 [-2.70; 3,56] 0.779
etoposidului 5,47 [0,28; 10,66] 0.040
Durere
Viscum -10.71 [-18.83; -2.60] 0.012
etoposidului 10.54 [4,64; 16.45] 0,002
Dispnee
Viscum -12.63 [-16.94; -8.32] <0,0001
etoposidului 5,82 [-1.04; 12,68] 0,090
Insomnie
Viscum -11.35 [-20.74; -1.96] 0.020
etoposidului 5.79 [-2.95; 14,53] 0.177
Pierderea apetitului
Viscum -6.40 [-6.40; -6.40] NE 
etoposidului 1.41 [-2.15; 4,96] 0.410
Constipație
Viscum -5.54 [-13.58; 2,50] 0.166
etoposidului -0.62 [-9.65; 8,41] 0.884
Diaree
Viscum 0,83 [-2.81; 4,47] 0,639
etoposidului 2.44 [-1.92; 6,80] 0,251
Probleme financiare
Viscum -11.46 [-16.21; -6.70] <0,0001
etoposidului -2.53 [-6.88; 1.83] 0.234

* Estimările rezultate dintr-un model mixt liniar, inclusiv scorul de bază, tratamentul și vizita ca factori fixi, și pacienții ca factori aleatorii.

 Toate valorile post-liniare în grupul Viscum au fost 0; prin urmare, nu a putut fi calculată nicio statistică de testare.

În ceea ce privește siguranța pacienților, au apărut cinci evenimente adverse grave (SAE) în timpul spitalizării pacienților pentru intervenții chirurgicale (2 Viscum, 1 pacient cu etoposidă) și pentru pneumonie (2 pacienți cu etopozidă). Pneumonia a fost considerată ca fiind legată de tratamentul cu etoposid; prin urmare, aceste SAE constituie reacții adverse grave la medicament (SAR). În ceea ce privește alte reacții adverse la medicament (ADR), nu s-a raportat nici o toxicitate în tratamentul cu Viscum, cu excepția eritemului local neglijabil după injectarea sc și hipotensiunea la un pacient. Sub etoposidă, toxicitatea observată a inclus toxicitatea hematologică G2, G3 ( Tabelul 5 ). G-CSF a fost necesar la trei pacienți. Doi pacienți au necesitat reducerea dozei (14 în loc de 21 de zile pe ciclu) datorită toxicității hematologice și un pacient avea nevoie de transfuzie de sânge pentru anemia G4 (1 episod).

Tabelul 5

Frecvența și intensitatea evenimentelor adverse (AE) și a reacțiilor adverse la medicament (ADR).

Caracteristicile AE Viscum N [%] Etopozida N [%] Total N [%]
Toate AE 16 [18,8] 69 [81,2] 85 [100,0]
AE nepotrivite prin
Severitate
sever 5 [5.88] 26 [30,59] 28 [36,47]
Rezultat
AE neschimbată 4 [4.76] 4 [4.76] 8 [9,52]
AE exacerbată 2 [2,38] 2 [2,38]
Medicamentul de studiu
Reducerea dozei 5 [5.88] 5 [5.88]
Utilizarea a continuat după întrerupere 1 [1,18] 18 [21.18] 19 [22.35]
Utilizați întrerupt 2 [2,35] 14 [16,47] 16 [18,82]
Reacțiile adverse la medicament (ADR) 2 [2,36] 47 [55,29] 49 [57,65]
Cea mai frecventă ADR
neutropenie 12 [25,53] 12 [24,49]
Anemie 6 [12,77] 6 [12.24]
Leucopenie 6 [12,77] 6 [12.24]
Greaţă 5 [10,64] 5 [10,20]
alopecia 4 [8,51] 4 [8,16]

4. Discutie

Tratamentul pacienților cu osteosarcom recidivant este nesatisfăcător, în special după o recidivă secundară sau ulterioară, deoarece nu există un tratament adjuvant eficient, pe lângă intervenția chirurgicală, care poate prelungi PRDFS. În afară de aceasta, pacienții puternic pre-tratați adesea nu doresc să primească un alt tratament agresiv, cu efecte secundare grave.

Relația dintre cancer și sistemul imunitar este bine cunoscută [ 29 ]. De asemenea, în osteosarcom, o relație între infecții ca un factor de prognostic favorabil a fost documentată [ 30 ] și o nouă tendință de imunoterapie ca tratament adjuvant apare în terapia osteosarcomului. Interferonul-Alfa (IFN) a fost utilizat în osteosarcomul în anii 1960 la Institutul Karolinska înainte de epoca chimioterapiei, iar rezultatele de 10 ani de supraviețuire (OS) sunt similare cu cele obținute doar cu chimioterapia [ 31 ]. Tripeptida muramilică (MTP) este un medicament derivat din BCG cu macrofag activând imunomodulator activat testat la Memorial Sloan Kettering Cancer Center împreună cu chimioterapia cu DFS îmbunătățită și supraviețuirea globală prelungită. Un câștig semnificativ al OS de la 70% la 78% ar putea fi observat după 6 ani de urmărire [ 32 ].

IFN și MTP sunt destul de scumpe. MTP este rambursat de către sistemul italian de sănătate numai pentru tratamentul adjuvant al pacienților cu osteosarcom nonmetastatic cu risc crescut (<30 de ani) împreună cu chimioterapie, la un cost ridicat (tratamentul total de 6 luni este de aproximativ 100.000 €). Viscum album fermentatum are o istorie lungă fiind folosit de peste 80 de ani; toxicitatea acestuia este bine cunoscută, iar costurile sale sunt mult mai accesibile în comparație cu celelalte două medicamente.

Desigur, studiul nostru are dezavantaje majore. Interpretarea rezultatelor sale este limitată de numărul scăzut de pacienți tratați și este nevoie de un studiu mai amplu pentru a dovedi confirmarea acestor concluzii preliminare. De asemenea, utilizarea Viscum album fermentatum Pini se bazează pe recomandările producătorului pentru tratamentul sarcoamelor, care nu includ o rațiune în acest sens [ 33 ].Preparatul ales poate fi remarcabil, deoarece efectele farmacologice ale extractelor de vâsc au fost în mare parte atribuite lectinelor de vâsc [ 34-36 ], iar celelalte extracte de vâsc ale acestui producător depășesc viscum album fermentatum Pini cu privire la conținutul lor de lectină cu un factor care variază între 15 și 35. Totuși, sa demonstrat că extractul de vâsc de pin este mai puternic în creșterea activității limfocitelor în comparație cu un alt extract (Iscador M) mai bogat în conținutul de lectină de vâsc [ 37 ]. Deci, fie eficacitatea extractului de vâsc nu este (numai) dependentă de cantitatea de lectine de vâsc sau de principiile farmacologic active, altele decât lectinele de vâsc contribuie într-un mod relevant. Într-adevăr, viscotoxinele [ 36 , 38 , 39 ] au fost recunoscute ca substanțe farmacologic active și alți constituenți cum ar fi peptidele Kuttan [ 40 ], quercetin [ 41 , 42 ] și polizaharide [ 17 , 18 ] .

Indiferent de aceste aspecte nerezolvate, până în prezent rezultatele indică o tendință pozitivă în PRDFS pentru Viscum comparativ cu controlul istoric și descriptiv, de asemenea, comparativ cu Etoposide. Mai mult, pacienții Viscum tind să rămână superioari pacienților cu etopozid în mai multe domenii ale calității vieții lor. Chiar dacă acest studiu are un design deschis și evaluarea subiectivă a calității vieții poate fi influențată de pacienți care știu despre tratamentul lor real, se pare îndoielnic că aceste cunoștințe afectează în mod nejustificat evaluările QoL ale pacienților; mai degrabă, este mai probabil ca calitatea inferioară a vieții la pacienții tratați cu etoposidă să fie asociată cu frecvența și intensitatea mai ridicată a reacțiilor adverse la medicament observate pentru acest tratament.

5. Concluzii

Terapia cu Viscum pare a fi un tratament promițător adjuvant în prelungirea DFS a pacienților fără boală după cea de-a doua recidivă. Etoposida nu pare să prelungească DFS. Un studiu mai amplu în acest subgrup de pacienți ar putea fi de valoare, care ar putea compara Viscum cu alte imunomodulatoare cum ar fi IFN sau MPT.

Logo-ul ecam

Evidence-based Complementary and Alternative Medicine : eCAM
Comportament bazat pe evidente Alternat Med . 2014; 2014: 210198.
Publicat online 2014 Mar 31 doi: 10.1155 / 2014/210198
PMCID: PMC3988743
PMID: 24803944
Un studiu randomizat privind supraviețuirea fără boală ulterioară bolii cu vâscul adjuvant față de etoposidul oral la pacienții cu osteosarcom

Recunoasteri

Autorii mulțumesc tuturor participanților la studiu, Dr. J. Johannes Kuehn pentru ajutorul său în proiectarea studiului, dr. Massimiliano Luppi pentru supravegherea stocării medicamentelor de studiu, Dr. Silvia Cacciaguerra pentru monitorizare, Susanne Schönberg și Silke Weippert pentru date managementul și, în special, dr. Silvana Becker pentru ajutorul ei neîntrerupt asupra tuturor problemelor care vor apărea în timpul procesului. Societatea pentru Cercetare a Cancerului (Verein für Krebsforschung eV; VfK), Elveția, a furnizat gratuit medicamentele și kiturile de testare Viscum pentru măsurarea unor parametri imunologici ai laboratorului și a oferit sprijin financiar pentru monitorizarea costurilor. A fost singura sursă de finanțare. Marcus Reif efectuează alte studii pentru VfK.

Conflict de interese

Toți autori declară că nu există nici un conflict de interese cu privire la publicarea acestei lucrări. Toți autori declară că nu au angajări, consultanță, deținătorii de acțiuni, onorariile, mărturiile experților plătiți, cererile de brevete, granturile de călătorie sau alte suporturi.

Referințe

1. Briccoli A, Rocca M, Salone M, și colab. Refacerea metastazelor pulmonare recurente la pacienții cu osteosarcom. Rac . 2005; 104 (8): 1721-1725. PubMed ]
2. Fagioli F, Aglietta M, Tienghi A, și colab. Doze mari de chimioterapie în tratamentul osteosarcomului recidivat: un studiu efectuat de grupul Sarcoma italian. Journal of Clinical Oncology . 2002; 20 (8): 2150-2156. PubMed ]
3. Bacci G, Briccoli A, Longhi A, și colab. Tratamentul și rezultatul osteosarcomului recurent: experiență la Rizzoli la 235 pacienți inițial tratați cu chimioterapie neoadjuvantă. Acta Oncologica . 2005; 44 (7): 748-755. PubMed ]
4. Ritter J, Bielack SS. Osteosarcom. Analele Oncologiei . 2010; 21 (suplimentul 7): vii320-vii325. PubMed ]
5. Leary SE, Wozniak AW, Billups CA, și colab. Supraviețuirea pacienților pediatrici după osteosarcomul recidivat: experiența Spitalului de cercetare Sf. Iuda pentru copii. Rac . 2013; 119 (14): 2645-2653.Articol gratuit PMC ] [ PubMed ]
6. EURAMOS-1. Un studiu randomizat al Grupului de Studiu Osteosarcomului European și American pentru optimizarea strategiilor de tratament pentru osteosarcomul resectabil pe baza răspunsului histologic la chimioterapia preoperatorie. ISRCTN67613327, 2009, https://www.skion.nl/workspace/uploads/euramos_1_protocol_v2_1_2009_04_21.pdf .
7. Kebudi R, Görgün Ö, Ayan I. Etopozidul oral pentru sarcoame recurente / progresive din copilărie.Sânge pediatric și cancer . 2004; 42 (4): 320-324. PubMed ]
8. Sandri A, Massimino M, Mastrodicasa L. și colab. Tratamentul cu etopozidul oral pentru ependimoame recidivante din copilărie. Jurnalul de Hematologie Pediatrică / Oncologie . 2005; 27 (9): 486-490. PubMed ]
9. Hugo F, Dittmar T, Treutler EK, Zänker KS, Kuehn JJ. Extrasul din albumul Viscum Iscador P nu provoacă o buclă interleukină-6 autocrină în liniile celulare de limfom B-non-Hodgkin. Onkologie . 2005;28 (8-9): 415-420. PubMed ]
10. Mueller EA, Anderer FA. O oligozaharidă de albumină Viscum care activează citotoxicitatea naturală umană este un inductor al interferonului γ . Cancer Immunology Imunoterapia . 1990; 32 (4): 221-227. PubMed ]
11. Braun JM, Ko HL, Schierholz JM, Beuth J. Extractul standardizat de varză sporește răspunsul imun și reglează în jos creșterea tumorală locală și metastatică în modelele murine. Anticancer Research . 2002; 22(6): 4187-4190. PubMed ]
12. Schaffrath B, Mengs U, Schwarz T, și colab. Activitatea anticanceroasă a rViscuminei (lectina vâscului recombinant) în modele de colonizare tumorală cu șoareci imunocompetenți. Anticancer Research . 2001;21 (6): 3981-3987. PubMed ]
13. Kuttan G, Menon LG, Antony S, Kuttan R. Activitatea anticarcinogenă și antimetastatică a lui Iscador.Medicamente anti-cancer . 1997; 8 (1): S15-S16. PubMed ]
14. Hajto T, Hostanska K, Frei K, Rordorf C, Gabius HJ. Creșterea secreției factorului de necroză tumorală a , interleukinei 1 și interleukinei 6 de către celulele mononucleare umane expuse la lectina specifică beta -galactozidului din extractul de vas de la clinic aplicat. Cancer Research . 1990; 50 (11): 3322-3326. PubMed ]
15. Chernyshov VP, Heusser P, Omelchenko LI, și colab. Efectul imunomodulator și clinic al albumului Viscum (Iscador M și Iscador P) la copiii cu infecții respiratorii recurente ca urmare a accidentului nuclear de la Cernobâl. American Journal of Therapeutics . 2000; 7 (3): 195-203. PubMed ]
16. Kienle GS, Berrino F, Büssing A, Portalupi E, Rosenzweig S, Kiene H. Mistletoe în cancer – o revizuire sistematică a studiilor clinice controlate. Jurnalul European de Cercetări Medicale . 2003; 8 (3): 109-119. PubMed ]
17. Möckel B, Schwarz T, Zinke H, Eck J, Langer M, Lentzen H. Efectele lectinei I a vasului asupra liniilor de celule sanguine umane și asupra celulelor sanguine periferice – citotoxicitate, apoptoză și inducție a citokinelor. Arzneimittel-Forschung / Medicamente de cercetare . 1997; 47 (10): 1145-1151. PubMed ]
18. van Huyen J-PD, Bayry J, Delignat S, și colab. Inducerea apoptozei celulelor endoteliale de către albumul Viscum : un rol pentru proprietățile anti-tumorale ale lectinelor de vasc. Medicină moleculară .2002; 8 (10): 600-606. Articol gratuit PMC ] [ PubMed ]
19. Harmsma M, Ummelen M, Dignef W, Tusenius KJ, Ramaekers FCS. Efectele vâslei ( Viscum albumL.) extrag Iscador pe ciclul celular și supraviețuirea celulelor tumorale. Arzneimittel-Forschung / Medicina de cercetare . 2006; 56 (6): 474-482. PubMed ]
20. Hajtò T, Berki T, Pālinkās L, Boldizsār F, Németh P. Investigarea efectului vascului Escador ( Viscum album L.) asupra proliferării și apoptozei timocitelor murine. Arzneimittel-Forschung / Medicamente de cercetare . 2006; 56 (6): 441-446. PubMed ]
21. Schöffski P, Riggert S, Fumoleau P, și colab. Etapa I a trialului de aviscumina intravenoasa (rViscumina) la pacientii cu tumori solide: un studiu al Organizatiei Europene pentru Cercetare si Tratament al Grupului de Dezvoltare a Noului Medicament de Cancer. Analele Oncologiei . 2004; 15 (12): 1816-1824. PubMed ]
22. Longhi A, Mariani E, Kuehn JJ. Un studiu randomizat cu vâsc adjuvant față de etoposidul pe cale orală la supraviețuirea post-recădere a bolii la pacienții cu osteosarcom. Jurnalul European de Medicină Integrativă . 2009; 1 (1): 31-39.
23. Stein GM, Meink H, Durst J, Berg PA. Eliberarea citokinelor printr-un extract de vâsc lectin-1 (ML-1) fermentat, fără gradient, reflectă diferențele în reactivitatea PBMC la persoanele sănătoase și alergice și la pacienții cu tumori. European Journal of Clinical Pharmacology . 1996; 51 (3-4): 247-252. PubMed ]
24. Mueller EA, Hamprecht K, Anderer FA. Caracterizarea biochimică a unei componente în extractele de albumină Viscum care ameliorează citotoxicitatea NK umană. Immunopharmacology . 1989; 17 (1): 11-18.PubMed ]
25. Stein GM, Berg PA. Analizele prin citometrie în flux ale activării specifice a celulelor mononucleare din sângele periferic de la donatorii sănătoși, după stimularea in vitro, cu un extract de varză fermentată și lectine de vâsc. European Journal of Cancer . 1998; 34 (7): 1105-1110. PubMed ]
26. Stein GM, Büssing A, Schietzel M. Stimularea maturizării celulelor dendritice in vitro de către un extract de vâsc fermentat. Anticancer Research . 2002; 22 (6): 4215-4219. PubMed ]
27. Mossalayi MD, Alkharrat A, Malvy D. Implicarea oxidului nitric în efectul antitumoral al vascului ( Viscum album L.) extrage iscador pe macrofage umane: comunicare scurtă. Arzneimittel-Forschung / Medicamente de cercetare . 2006; 56 (6): 457-460. PubMed ]
28. Clopper CJ, Pearson ES. Utilizarea limitelor de încredere sau de fiduciar ilustrate în cazul binomului.Biometrice . 1934; 26 (4): 404-413.
29. Blair GE, Cook GP. Cancerul și sistemul imunitar: o prezentare generală. Oncogene . 2008; 27 (45, articolul 5868) [ PubMed ]
30. Jeys LM, Grimer RJ, Carter SR, Tillman RM, Abudu A. Infecția postoperatorie și supraviețuirea crescută la pacienții cu osteosarcom: sunt asociate? Analele Oncologiei Chirurgice . 2007; 14 (10): 2887-2895. PubMed ]
31. Müller CR, Smeland S, Bauer HCF, Sæter G, Strander H. Interferon ca tratament unic adjuvant în osteosarcomul de grad înalt: rezultate pe termen lung ale seriei Spitalul Karolinska. Acta Oncologica .2005; 44 (5): 475-480. PubMed ]
32. Meyers PA, Schwartz CL, MD, Krailo, și colab. Osteosarcomul: adăugarea tripeptidei muramil la chimioterapie îmbunătățește supraviețuirea globală – un raport al grupului de oncologie pentru copii.Journal of Clinical Oncology . 2008; 26 (4): 633-638. PubMed ]
33. Weleda AG. Iscador în tratamentul cancerului. Recomandări pentru tratament . Ediția a treia.Arlesheim, Elveția: Weleda AG Medical Affairs, Schwäbisch-Gmünd, Germania, Societatea pentru Cercetarea Cancerului; 2013.
34. Janssen O, Scheffler A, Kabelitz D. Efecte in vitro ale extractelor de vâsc și lectine de vâsc.Citotoxicitatea față de celulele tumorale datorată inducerii deceselor programate de celule (apoptoză) Arzneimittel-Forschung / Drug Research . 1993; 43 (11): 1221-1227. PubMed ]
35. Büssing A, Suzart K, Bergmann J, Pfüller U, Schietzel M, Schweizer K. Inducerea apoptozei în limfocitele umane tratate cu Viscum album L. este mediată de lectinele de vâsc. Cancer Letters . 1996; 99(1): 59-72. PubMed ]
36. Büssing A, Vervecken W, Wagner M, Wagner B, Pfüller U, Schietzel M. Exprimarea moleculelor Apo2.7 mitocondriale și activarea Caspase-3 în limfocitele umane tratate cu lectine de vaselină inhibitoare de ribozom și viscotoxine permeabilizante cu membrană celulară. Citometrie . 1999; 37 (2): 133-139. PubMed ]
37. Stein GM, Berg PA. Imunomodulări în curs de dezvoltare Mistelextrakte: ergebnisse von in vitro și ex vivo Studien (abstract) Der Merkurstab . 1997; 50 (2): p. 35.
38. Büssing A, Schaller G, Pfüller U. Generarea de intermediari de oxigen reactivi (ROI) de către thionins de la Viscum album L. Anticancer Research . 1998; 18 (6): 4291-4296. PubMed ]
39. Tabiasco J, Pont F, Fournié JJ, Vercellone A. Viscotoxinele vasului de mistre cresc citotoxicitatea mediată celular de ucigaș. Jurnalul European de Biochimie . 2002; 269 (10): 2591-2600. PubMed ]
40. Kuttan G, Vasudevan DM, Kuttan R. Izolarea și identificarea unei componente de reducere a tumorii din extractul de vasc (Iscador) Letters of Cancer . 1988; 41 (3): 307-314. PubMed ]
41. Becker H, Exner J. Vergleichende Untersuchungen von Misteln verschieden Wirtsbäume an Hand de Flavonoide și Phenolcarbonsäuren. Zeitschrift für Pflanzenphysiologie . 1980; 97 (5): 417-428.
42. Sekeroğlu ZA, Sekeroğlu V. Efectele Viscum albumului L. extract și quercetin asupra citotoxicitățiiinduse de metotrexat la celulele măduvei osoase de șoarece. Mutation Research . 2012; 746 (1): 56-59. PubMed ]

Articole de la medicina complementară și alternativă bazată pe dovezi: eCAM sunt oferite aici prin amabilitatea companiei Hindawi Limited

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988743/

 

Compusi naturali din plante utili in glioame(cancere cerebrale)

Gliomele sunt cele mai frecvente tumori cerebrale primare, fie benigne, fie maligne, provenite din țesutul glial. Glioblastomul multiform (GBM) este forma cea mai răspândită și mai agresivă dintre toate glioamele asociate prognosticului zecimal datorită naturii invazive ridicate. GBM este, de asemenea, caracterizată de o rată ridicată de recurență și de caracteristici de rezistență la apoptoză care fac ca ținta terapeutică să fie foarte dificilă.

Mitochondriile sunt organele celulare cheie care acționează ca puncte focale în diverse game de funcții celulare cum ar fi metabolismul celular al energiei, reglarea homeostaziei ionice, semnalizarea redox și moartea celulelor. Eventualele constatări ale disfuncției mitocondriale includ preferința glicolizei față de fosforilarea oxidativă, generarea crescută a speciilor de oxigen reactiv și aparatele apoptotice anormale mitocondriene mediate sunt observate frecvent la diverse afecțiuni maligne, incluzând glioame. În special, glioamele prezintă anomalii ale structurii mitocondriale, mutații genomice în mtDNA, metabolismul energetic modificat (efect Warburg), împreună cu mutații în enzima izocitrat dehidrogenază (IDH).

Numeroși compuși din plante au demonstrat eficacitatea în tratamentul  natural al glioamelor(tumori cerebrale) prin vizarea cascadelor mitocondriale de semnalizari aberante. Unii dintre compușii naturali vizează direct componentele mitocondriilor, în timp ce alții acționează indirect prin modularea anomaliilor metabolice care sunt consecința disfuncției mitocondriale.

Prezenta recenzie oferă o perspectivă moleculară asupra patologiei mitocondriale în glioame și mecanismele terapeutice ale unora dintre compușii naturali promițători care țintesc disfuncția mitocondrială. Această analiză scoate, de asemenea, la lumină provocările și modalitățile posibile de depășire a obstacolelor asociate cu acești compuși naturali pentru a intra pe piața clinică.

1. INTRODUCERE

Gliomul este un termen larg care cuprinde toate tumorile benigne sau maligne care apar din celulele gliale.În anul 2012, la nivel mondial, 256.213 persoane au fost diagnosticate cu tumori cerebrale primare maligne, cu rate de incidență mai mari în țările dezvoltate decât țările în curs de dezvoltare [ 1 ]. În SUA, aproximativ 68.470 de cazuri noi de tumori cerebrale și maligne primare maligne și CNS și 13.770 de decese sunt de așteptat să apară în 2015. Gliomul este tumora cerebrală primară comună reprezentând 28% din totalul tumorilor cerebrale și 80% din toate tumorile maligne [ 2 ]. Deși incidența relativă este scăzută; prognosticul sărac, impactul negativ asupra calității vieții și a funcției cognitive a pacienților face managementul bolii sa o sarcină dificilă.

Glioamele au origini celulare diferite și sunt clasificate ca oligodendrogliom, astrocitom, ependimom, glioblastom, gliom mixt și câteva alte tipuri histologice. OMS a clasificat glioamele din clasa I-IV cu o rată crescătoare de dediferențiere și natură malignă.

Glioblastomul, de asemenea cunoscut sub numele de „astrocitom de grad IV” sau de gliobalstom multiform (GBM), care este foarte răspândit (54,7%) din toate glioamele și forma cea mai agresivă cu prognostic scăzut [ 1 ]. GBM are rate de supraviețuire zecimale, doar 4,7% dintre pacienți trăiesc mai mult de 5 ani [ 3 ].

Expunerea la doze mari de radiații ionizante și prezența câtorva sindroame genetice rare cauzate de mutațiile genetice moștenite sunt doar doi factori de risc acceptați pentru patogeneza glioamelor.

Numeroase rapoarte sugerează corelarea negativă a alergiilor și a bolilor atopice cu incidența glioamelor care indică efectul protector al alergiilor4 ].

Chirurgia, radioterapia(inductoare de glioame ca radiatie ionizanta!), chimioterapia bazată pe temozolimidă reprezintă opțiuni de tratament în managementul clinic actual al gliomului. Cu toate acestea, majoritatea glioamelor sunt chirurgicale inoperabile și diagnosticate în stadiu ulterior și nivelul lor ridicat de rezistență la chimioterapia convențională, radioterapia marchează glioamele ca fiind unul dintre numeroasele tipuri de cancer care sunt dificil de tratat. În ciuda evoluțiilor recente în aceste terapii, în prezent GlioBlastomulMultiform are o supraviețuire mediană de 14,6 luni de la diagnosticare. Existența barierei hematoencefalice, rețeaua complexă de căi de semnalizare multiple modificate, prezența celulelor stem gliomice sunt principalii factori cauzali pentru rezultatul slab cu terapiile curente [ 5 ]. Prin urmare, terapii mai eficiente pentru tratamentul glioamelor maligne sunt justificate de urgență. Revizuirea actuală este o încercare de a rezuma fiziopatologia globală a glioamilor în ceea ce privește disfuncția mitocondrială.Această revizuire discută, de asemenea, importanța
din produsele naturale ca agenți potențiali citotoxici care vizează dezechilibrele mitocondriale în celulele gliomului.

1.1. Patologia moleculară a glioamelor

Progresele recente în tehnicile analizelor genomice și proteomice au contribuit la identificarea și înțelegerea patologiei moleculare a glioamelor maligne. Pe baza cunoștințelor disponibile în prezent privind modificările moleculare ale glioamelor, s-au stabilit diferite sisteme de clasificare care oferă o bază pentru terapii mai bine direcționate [ 6 – 8 ].

Atlasul genomic al cancerului (TCGA) a grupat glioblastoame bazate pe datele proteomice în trei clase: una care prezintă mutații sau amplificări ale receptorului factorului de creștere epidermică (EGFR), în al doilea rând, având activarea factorului de creștere derivată de la trombocite, cu pierderea regulatorului RAS NF1 [ 6 ].

O altă clasificare furnizată de Verhaak și colab ., A clasificat glioblastomul în patru subtipuri: clasic, mezenchim, proneural și neural prin profilare genomică [ 7 ].Acestea sunt definite după cum urmează: Amplificarea și amplificarea clasică EGFR a cromozomului 7 cu pierderea cromozomului 10; Creșterea mezenchimală a frecvenței mutațiilor / delețiilor Nf1 / nivelurilor scăzute de exprimare, împreună cu pierderea fosfatazei și a omologului de tensin (PTEN); Amplificări focare-proliferative în mutațiile punctuale ale factorului de creștere derivat din plachete (PDGFRA) și ale izocitrat dehidrogenazei I (IDH1), mutații TP53; Neural – Cel mai asemănător cu modelele normale de expresie a țesutului cerebral.

Alți cercetători au folosit diferite criterii, cum ar fi mutațiile IDH1, imunohistochimie pentru a clasifica glioblastoamele. Aceste sisteme de clasificare bazate pe markeri moleculari discriminează managementul mai adecvat al glioblastoamelor folosind terapii vizate [ 8 , 9 ].

În ultimii ani, numeroase modificări moleculare au fost identificate și adăugate la nucleul peisajului molecular al glioamelor. Cele mai frecvente dereglări includ mutații în P53, IDH1, alfa talasemie / sindrom de retardare mintală (ATRX), telomerază revers transcriptază (TERT), histone H3, familia 3 (H3F3), modificarea tiparelor de metilare a O- (MGMT), promotori P16, Expresia receptorului factorului de creștere derivat din plachete alfa (PDGFRA), factorul 2 de transcripție a oligodendrocitelor (OLIG2) [ 10 ]. Trei căi principale de bază care sunt adesea modificate în> 75% din glioblastoame au fost identificate de Atlasul genomului cancerului (TCGA) ca i) receptorul tirozin kinazei / RAS / fosfatidilinozitol 3 kinaza (RTK / RAS / PI3K) semnalizare ii) p53 iii) retinoblastomul (RB) [ 11 ].

Înțelegerea anomaliilor moleculare ale glioamelor maligne a pregătit o cale pentru terapiile vizate.Aberațiile din receptorul factorului de creștere epidermal (EGFR), receptorul factorului de creștere derivat din plachete (PDGFR), receptorul factorului de creștere al endoteliului vascular (VEGFR), cum ar fi amplificările, mutațiile sunt fenomene care apar frecvent în glioblastoame, ducând la angiogeneză îmbunătățită, migrație și supraviețuire [ 12 ].

2. PATOFIZIOLOGIA MITOCONDRIALĂ ÎN GLIOM

Mitochondriile reprezintă organele celulare cheie care joacă un rol esențial în diferite funcții, cum ar fi reglementarea metabolismului celular, semnalizarea redox, homeostazia ionică și moartea celulelor. În plus față de rolul bine stabilit de „putere a celulei”, recent a fost acceptata mitocondria  ca „motor de moarte celulară” datorită rolului său crucial în moartea sau apoptoza programată [ 13 ]. Acestea sunt un organ dublă membrană dublă închisă care are propriul material genetic și suferă propriul proces de biogeneză fără sincronizare cu ciclul celular. Datorită rolurilor lor fundamentale în procesele-cheie, cum ar fi producerea ATP de energie monetară pentru întreținerea celulară, generarea de specii reactive de oxigen (ROS) și executarea căilor moarte celulară, mitocondriile au fost implicate în numeroase procese patologice cum ar fi cancerul, bolile neurodegenerative, obezitate, diabet și îmbătrânire.

Mitocondriile sunt considerate organele semi-autonome în sistemul celular eucariotic având gene care codifică ADNul circular pentru proteine ​​de importanță critică [ 14 ]. Fiind un scaun pentru producerea ATP și ROS celular primar, schimbările în funcționarea mitocondrială pot avea consecințe directe asupra soiului celular și astfel studiul rolului și al reglementării mitocondriilor în cazurile de cancer de gliom este de interes primar [ 15 ]. Funcția mitocondrială se constată că este modificată / afectată în proporție variabilă în diferite tipuri de glioblastoame, cum ar fi astrocitomul și ependimoblastomul. Defectarea structurala si functionala a mitocondriilor gliale este efectul cumulativ al semnalizarii hemodinamice, mitogene, apoptotice si bioenergetice, care sunt caracteristicile comune ale celulelor canceroase [ 16 ]. Modificările structurale ale mitocondriilor ca cristoliza parțială / totală, umflarea mitocondriilor, dinamica modificată, cum ar fi ciclurile de fisiune și de fuziune ale mitocondriilor, conduc la un grup heterogen de mitocondrii în diferite grade de gliom [ 17 ]. Aceste tulburări structurale indică în mod clar capacitatea oxidativă de fosforilare compromisă și cuplarea energetică în liniile celulare de gliom.

Celulele gliom maligne derivate din culturile in vitro și de la oameni depind în principal de ATP citosolic produs de glicoliza aerobă în locul ATP derivat din mitocondriile, o schimbare în preferința energetică numită popular „ipoteza Warburg”18 ]. Dependența lor de căile de scădere a consumului de energie, spre deosebire de omologii lor sănătoși(celule), expune gradul de afectare funcțională a funcției mitocondriale și incapacitatea sa de a utiliza cetone și acizi grași pentru producerea de ATP în afară de glucoză [ 19 ].Această proprietate a dependenței exclusive de glucoză pentru producerea de energie a fost recoltată pentru țintirea terapeutică a GlioBlastomMultiform pediatric(la copii) prin dieta ketogenică la câțiva pacienți cancer cerebral gbm, unde s-au observat multe cazuri de ameliorare simptomatică și îmbunătățirea managementului tumorilor [ 20 ]. Unele modele de glioame pe animale au prezentat profil pro apoptotic, antiproliferativ, antiinflamator și antiangiogenic în prezența restricției de glucoză, ceea ce justifică puternic prezența mitocondriilor dezagreabile și ineficiente în metabolismul cetonei pentru producerea de energie în celulele glioblastomului [ 21 ]. Cererea de energie înaltă, împreună cu lipsa sistemului de tampon redox propriu împotriva generării speciilo reactive oxigen ROS mitocondriale, face ca celulele gliomului să fie susceptibile de leziuni apoptotice (fig.11). Celulele gliomice încearcă să obțină o cale alternativă de producere a energiei în absența glucozei, în special a acizilor grași, ceea ce are ca rezultat creșterea speciilor reactive de oxigen ROS. Aceste specii reactive de oxigen ROS în prezența unor defecte antioxidante depreciate, cum ar fi nivelurile reduse de GSH în gliom, pot să duca la apoptoze și astfel să prevină progresia tumorii [ 22 ]. Acest beneficiu terapeutic al apoptozei mediate de speciile reactive de oxigen ROS în prezența restricției de glucoză justifică în plus potențialul de direcționare a metabolismului energetic pentru terapia cu gliom.

Fig. (1)

Disfuncția mitocondrială în gliom – Evaziunea apoptozei: Funcția mitocondrială afectată datorită mutațiilor genomice din mtADN duce la o funcționare defectuoasă a lanțului de transport al electronilor, generând astfel creșterea speciilor reactive oxigen ROS. Acest oxidant celular crescut 

Capacitatea metabolică mitocondrială afectată în celulele gliomului a fost evidentă prin identificarea mutațiilor în genele care codifică Isocitrat dehidrogenaza (IDH) [ 23 ]. Această enzimă este responsabilă pentru carboxilarea reductivă a a-keto glutaratului la isocitrat, care ulterior este izomerizată la citrat, componenta principală a ciclului Krebs. S-a identificat că majoritatea glioblastoamelor prezintă o mutație în gena care codifică forma citozolică a IDH1. Mutațiile IDH1 care apar la nucleotidele care codifică arginina, R132 sunt frecvente în majoritatea glioamelor difuze și secundare [ 24 ]. Mutațiile în IDH2, omologul mt al IDH1, de asemenea, s-a constatat că apare la R172 și este cunoscut că este asociat cu pierderea activității enzimatice [ 25 ]. Atât tipul de mutații conduce la acumularea de 2-hidroxiglutarat, un oncometabolit care este utilizat ca biomarker [ 26 ]. Mutațiile în izoformele mitocondriale legate de NADPH ale IDH1 și IDH2 conduc la o producție de energie afectată în mitocondrii și astfel oferă o dovadă a disfuncției mitocondriale în gliom și în alte tipuri de tumori [ 16 ].

Apoptoza este un tip de mecanism de deces celular primar caracterizat prin condensare nucleară, formarea de corpuri apoptotice urmate de fagocitoză. Mai mulți agenți anti-cancer acționează predominant prin executarea apoptozei și astfel stopând progresia malignă a tumorilor [ 27 ]. Deteriorarea în mașinile apoptotice, fie prin mutații genetice sau prin semnalizarea celulară modificată, este mecanismul de angajare utilizat de celulele canceroase responsabile de rezistența la chimioterapie [ 28 ]. S-a descoperit că celulele gliomului au semnalare apoptotică afectată în primul rând datorită mutațiilor din genele de omolog de proteine ​​p53 și limfoame de celule B, cum ar fi 2 (BCL-2). P53 este considerat „gardianul genomului”, cunoscut pentru rolul său activ în repararea ADN-ului, apoptoza și reglarea ciclului celular. P53 prin promovarea unui modulator regulat al apoptozei p53 (PUMA), proteinei 1 (NOXA) indusă de forbol-12-acetat de miristat-13 și a proteinelor domeniului 3 de omologie Bcl-2 (BH3) și a factorului-1 de apoptoză de activare a peptidazei -1), ajută la executarea apoptozei [ 29 ]. Mutațiile inactivatoare ale genei p53 au fost găsite ca fiind comune în 30-50% din gliomul uman [ 30 ]. Împreună cu mutațiile p53, mutațiile în genele care codifică familia de proteine ​​omoloage Bcl-2 sunt, de asemenea, trăsături comune ale glioamelor maligne. Proteinele familiei Bcl-2 au un efect variabil asupra modulației membranei mitocondriale prinstabilizare sau permeabilizare și astfel sunt clasificate în proteine ​​antiapoptotice și respectiv pro apoptotice. Studiile imunohistochimice au arătat o exprimare crescută a proteinei Bcl-2 anti-apoptotice în probele tumorale de gliom uman [ 31 ]. Într-adevăr, există o creștere paradoxală a proteinei X pro-apoptotice asociate Bcl-2 (Bax), care sugerează interacțiunea anormală între proteinele membrilor familiei Bcl-2 care corespund apariției disfuncției membranei mitocondriale în gliomul malign.  Mutațiile în celelalte componente antiapoptotice, cum ar fi Bcl-2, Bcl-xl și Mcl-1, au fost, de asemenea, responsabile de rezistența la radioterapie și chimioterapie în GBM [ 32 ]. În plus față de mutațiile menționate mai sus în mecanismele apoptotice intrinseci, s-au găsit, de asemenea, mutații în căile celulare amonte care reglează apoptoza în glioame. Gliomurile umane au fost identificate ca fiind caracterizate prin expresia receptorilor tirozin kinazei (RTKs) amplificată pe suprafețele celulare [ 33 ]. Creșterea semnalizării factorului de creștere prin RTK conduce la recrutarea fosfoinozitid 3-kinazei (PI3K) și activarea corespunzătoare a protein kinazei Akt, care exercită o multitudine de efecte celulare. Akt prin capacitatea sa de a fosforila diferite proteine ​​care potențează acțiunea membrilor familiei anti-apoptotice BCL-2, prin reglarea negativă a p53 de către minutul dublu murin 2 (MDM2), inhibă calea intrinsecă a apoptozei [ 34 ]. De asemenea, inhibă indirect calea extrinsecă a apoptozei prin activarea mTOR (figura 11 ).

Cardiolipina este un component important de fosfolipid prezent în membrana mitocondrială interioară.Este un fosfolipid dimeric cu patru lanțuri diferite de acil combinate pentru a da variante de specii moleculare de cardiolipină [ 35 ]. Este foarte concentrat la punctele de contact ale membranelor mitocondriale exterioare și interioare și, de asemenea, la lanțul de transport al electronilor (ETC). Asocierea sa cu complexele supra-moleculare ale componentelor respiratorii este  esențială pentru funcția mitocondrială [ 36 ]. Câteva dovezi experimentale și clinice au arătat clar că biosinteza cardiolipinei necorespunzătoare și afectarea ETC funcțional mitocondrial este asociată cu glioame. Tehnologiile lipidomice moleculare au indicat clar distribuția asimetrică a diferitelor specii moleculare de cardiolipină corespunde funcționării suboptimale a complexelor respiratorii [ 37 ]. Cardiolipina este, de asemenea, descoperită că afectează deschiderea porului tranzitoriu al permeabilității mitocondriale (MPTP), un canal multimeric responsabil cu eliberarea apărătorilor de apoptoză, cum ar fi citocromul c , SMAC și Omi. Site-urile bogate în cardiolipină ale membranei mitocondriale ajută la recrutarea familiei de proteine ​​Bcl-2 pro apoptotice și la interacțiunea Bax cu MPTP [ 34 ]. Astfel, gradul de sinteză defectuoasă a cardiolipinei și funcția sa afectează în mod indirect capacitatea metabolică mitocondrială și execuția apoptozei intrinseci, care s-au dovedit a fi afectate / defectate în anumite grade ale celulelor gliomului.

S-a identificat, de asemenea, că permeabilitatea membranei mitocondriale este reglată de proteine ​​structurale citosolice, în special cele din familia de tubulină. Izotopul β-tubulină din clasa a III-a (tubulină pIII) este asociat cu canalul anionic dependent de tensiune (VDAC) pe membrana mitocondrială exterioară și reglarea acesteia [ 38 ]. Se constată că tubulina blochează VDAC prin fosforilare și reduce mișcarea metabolitului prin membrană și astfel oprește funcția mitocondrială în celulele tumorale [ 39 ]. Într-adevăr, β-tubulina este identificată ca fiind un factor important de supraviețuire pentru celulele canceroase, care acționează în concert cu alți factori de supraviețuire celulară și este, prin urmare, responsabil pentru rezistența chimică la cancer [ 40 ]. Efectul de supraviețuire pro-mediată mediată de tubulina βlll este mediată prin adoptarea celulelor la stresul oxidativ și lipsa de energie. Acest mod de reglare VDAC de către tubulină oferă un alt mecanism de disfuncție mitocondrială în gliom [ 16 ]. Împreună cu tubulinele mitocondriale, modificările la ceilalți membri ai familiei tubulinice au fost de asemenea asociate cu asocierea mitocondrială cu reticulul endoplasmatic, migrația celulelor canceroase și metastazele 41,42 ].

Autofagia este o cale de moarte vitală a celulelor, efectuată de lizozomi pentru reciclarea componentelor celulare deteriorate. S-a demonstrat că diferite tipuri de cancer au semnalare autofagică afectată sau aberantă, care are ca rezultat progresia tumorii și patogeneza [ 43 ]. Studii recente privind culturile in vitroale celulelor gliomice au descoperit că anumiți agenți citotoxici cum ar fi selenita și inhibitorul de creștere (ING4) pot efectua autofagia prin generarea speciilor reactive oxigen ROS mitocondrial și hiperpolarizarea membranei mitocondriale și activarea corespunzătoare a mitofagiei [44,45]. Absența activării endogene a mitofagiei ca răspuns la generarea enormă de celule canceroase sugerează o reglare acută a homeostatică a căilor autofagice / mitofagice în celulele glioblastomului.

3. FITO-CHIMICALE(„chimicale” din plante) PENTRU DISFUNCȚIA MITOCHONDRIALĂ ÎN GLIOM

Scopul principal al descoperirii de droguri/medicamente constă în descoperirea și dezvoltarea unor agenți chimioterapeutici eficienți, siguri  și accesibili. Compușii bioactivi naturali au o mare importanță în descoperirea medicamentelor, deoarece sunt în acord cu aceste obiective. Studiile recente din ultimele decenii au arătat că activitatea anticanceroasă a numeroși compuși naturali în glioame prin vizarea specifică a disfuncției mitocondriale. Unii dintre acești compuși acționează direct asupra diferiților componenți ai mitocondriilor, afectând în mod direct fosforilarea oxidativă și semnalizarea apoptotică, iar alții acționează indirect prin modularea anomaliilor metabolice apărute ca urmare a disfuncției mitocondriale (Fig.22). Tabelul Tabelul1 reprezintă lista compușilor naturali, sistemele lor model, gama citotoxică și mecanismele identificate responsabile pentru observațiile lor.

Fig. (2)

Compușii naturali care vizează disfuncția mitocondrială în gliom:Fito-chimicalele sunt cunoscute pentru a exercita efect anti-cancer în mai multe tipuri gliom prin afectarea funcțiilor multimodale ale mitocondriilor la diferite niveluri. Shikonin, Mahanine au fost identificate pentru a inhiba 
tabelul 1

Compușii naturali care vizează disfuncția mitocondrială prin diferite modele experimentale de gliom.

3.1. Curcumina

Curcumina, un difutilmetan, un pigment galben polifenolic natural care se obtine din turmeric (radacina de planta) este folosit pe scara larga in medicina si in traditiile culinare din India. Dovezile acumulate sugerează proprietățile antioxidante, antiinflamatorii, antiproliferative [ 46 , 47 ]. Curcumina a indus calea apoptotică mediată de mitocondrie prin eliberarea citocromului C, creșterea raportului Bax-Bcl2, scindarea bidului la tBid și a caspazei activate 8, 9 și 3 în celulele u87MG [ 48 ]. De asemenea, curcumina a sensibilizat celulele U87MG rezistente la apoptoza mediată de TNF-ligand (TRAIL),a mediat  apoptoza la concentrații subtale, prin declanșarea căilor apoptotice atât externe, cât și intrinseci prin eliberarea mitocondriilor din citocromul c și activarea caspazelor 3,8,9 [ 49 ]. Într-un alt studiu în celulele T98G ale glioblastomului uman, raportul Bax-Bcl2 a crescut cu curcumină, a indus eliberarea de citocrom c, (AIF), al doilea activator derivat din mitocondriile caspazelor (Smac) din mitocondrii,a activat caspaza 9 ,  indicând rolul apoptozei mediată de mitocondrii [ 50 ]. Curcumina a mărit permeabilitatea membranei mitocondriale, ducând la reducerea respirației și sinteza ATP în mitocondriile hepatice izolate la șobolan.Rezultatele observate s-au dovedit a fi datorate deschiderii porului tranzitoriu al permeabilității membranei mitocondriale (MPTP) prin oxidarea grupărilor tiol membranare și a nivelurilor scăzute de ca ++ în mitocondrii [ 51 ].

3.2. Mahanine

Mahanina este un alcaloid carbazolic, derivat din plante de legume asiatice cum ar fi Micromelum minutum, Murraya koenigii etc. Studiile recente sugerează multe proprietăți farmacologice ale mahaninei, cum ar fi anti-mutagenitatea, activitatea antibacteriană și proprietățile anticanceroase în diferite modele tumorale 52 , 53 ]. Mahanina a demonstrat efecte antiproliferative puternice atât în modelele GlioBlastomMultiform in vitro, cât și in vivo , fără a avea efect asupra astrocitelor normale. În liniile celulare U87MG, LN229, a demonstrat inhibarea specifică a complexului mitocondrial ETC III, generând astfel generarea speciilor reactive oxigen ROS și răspunsul său la deteriorarea ADN asociat. Acest lucru mediază reglarea și activarea Chk1 / Chk2 conducând la arestarea/oprirea lui G0 / G1. N-acetil cisteina (NAC), a mediat  neutralizarea de ROS și facut knockdown kinazele de puncte de control 1/2 (chk1 / chk2) a scăzut înclinația / capacitatea mahaninei de inducere de stopare G0 / G1. Aceste evenimente stabilesc în mod clar rolul esențial al generării speciilor oxgen reactiv ROS induse de mahanina și activarea în aval a chk1 / chk2 în activitatea sa antiproliferativă. În plus, mahanina a redus, de asemenea, invazia și diferențierea indusă a celulelor glioblastomului [ 54 ].

3.3. Feniletilizotiocianat (PEITC)

PEITC este un membru important al grupului de izotiocianați naturali, un grup de substanțe chimice care conțin gruparea izotiocianat (N = C = S), care sunt abundente în multe plante leguminoase crucifere, cum ar fi varză, broccoli, Numeroase rapoarte sugerează potențialul chemopreventiv și anticancer al PEITC într-o varietate de cancere umane cu o mai mică toxicitate față de celulele normale [ 55-59 ]. Citotoxicitatea selectivă a PEITC, cel puțin parțial, a fost atribuită efectelor sale de modulare ROS. PEITC scade inițial glutationhoione (GSH), glutation-SS-glutation (GSSG) și mai târziu formează aducte cu glutation și îl exportă din celulă, perturbând complet sistemul antioxidant glutation total. În plus, inhibă și sistemul de peroxidază a glutationului [ 60 ]. Lee et al ., Chou și colab ., Su și alții , au raportat că PEITC prezintă eficacitate antitumorală potențială împotriva unei varietăți de linii celulare de gliom uman prin inducerea apoptozei.Studiile in vitro cu PEITC în celule GBM (GBM8401) umane sugerează posibila implicare a căii de moarte mediată de receptorul de moarte și de mitocondriile în inducerea apoptozei. Tratamentul cu PEITC a generat generarea ROS, potențialul membranei mitocondriale perturbate, care a condus la eliberarea diferitelor proteine ​​modulatoare apoptotice din mitocondrii, cum ar fi citocromul c , Endo G și factorul de inducere a apoptozei (AIF). De asemenea, proteinele pro-apoptotice îmbunătățite (Bax, Bid și Bak) și scăderea nivelurilor de proteine ​​anti-apoptotice (Bcl-2, Bcl-xl) și activitățile crescute de caspază 9, 8 și 3. Mai mult, concentrațiile subtoxice de PEITC, de asemenea, au sensibilizat celulele gliomului  la citotoxicitatea TRAIL prin creșterea generată a ROS total, au crescut nivelurile superoxidului mitocondrial [ 61 , 62 ]. Într-un alt studiu, PEITC a redus componentele sistemului antioxidant celular, cum ar fi expresia GSH și activitatea SOD în celulele LN 229 [ 63 ]. Într-un studiu, Chen și colaboratorii au raportat că PEITC suprimă respirația mitocondrială prin întreruperea lanțului său de transport al electronilor la complexul I printr-o degradare timpurie a proteinelor NADH dehidrogenază Fe-S-3 și scade rapid nivelele GSH în celulele leucemice umane [ 64].

3.4. Aloe Emodin

Aloe emodina este unul dintre compușii biologic activi izolați din frunzele Aloe vera . A demonstrat activitate anticanceroasă în multiple tipuri de cancer [ 65 , 66 ]. Aceasta a suprimat proliferarea celulelor U87 în timp și în funcție de doză și a modificat potențialul membranei mitocondriale conducând la apoptoza mediată de mitocondrie [ 67 ]. Analiza genomică efectuată în celulele U87 tratate cu Aloe emodin a evidențiat reglarea în sus a /cresterea  genelor importante implicate în calea apoptotică mitocondrială și dinamica mitocondrială.Astfel de gene care prezintă relevanță potențială includ SHARK-asociat cu ARN (SHARPIN) și proteina mitocondrială de fisiune 1 (FIS1) [ 68 ].

3.5. dioscină

Dioscinul, un saponin steroid natural, este izolat de plantele medicinale din speciile Dioscorea. Cercetările din ultimele decenii au sugerat o gamă mai largă de proprietăți farmacologice, cum ar fi activități hepatoprotectoare, anticanceroase, antiinflamatoare [ 69 – 71 ]. Dioscinul a demonstrat o activitate proliferativă promițătoare în gliomul de șobolan c6 atât în modele in vitro, cât și in vivo prin inducerea stresului oxidativ.  Tratamentul cu generarea ROS indus de dioscin, stresul Ca2 + care conduce la disfuncție mitocondrială. Acumularea de ROS a dus în continuare la leziuni mitocondriale, inclusiv modificări ale structurii mitocondriale, cum ar fi descompunerea membranei duble mitocondriale, umflarea tranzitului mitocondrial și permeabilității mitocondriale și modificarea potențialului membranei mitocondriale. Apoptoza dioscină indusă prin calea dependentă de mitocondriu prin eliberarea citocromului c, moartea programată 5 (PDCD-5), expresia reglată în jos a factorilor anti-apoptotici cum ar fi Bcl-2, Bcl-xl, expresia reglementată în sus a factorilor pro-apoptotic ca Bax, Bak, Oferta și activitățile crescute ale caspazei-3.In vivo , tratamentul dioscină a scăzut semnificativ volumul tumorii și a prelungit timpul de supraviețuire a șobolanilor la model sobolan de alogrefa de gliom [ 72 ].

3.6. α-bisabolol

α-bisabolol, un alcool  sesquiterpene  prezent în uleiuri esențiale posedă proprietăți antitumorale potent în celulele gliom U87 umane. α-bisabolol timp indus și doză efect citotoxic dependent prin calea apoptotice intrinsecă evidentă prin disipare a potențialului membranei mitocondriale, eliberarea citocromului c și scindarea PARP în celulele U87 [ 73 ]. hint:vezi boswellia(tamaie)

3.7. Dantron

Dantron (cunoscut anterior ca danthron) este un derivat de antrachinonă natural obținut din medicina chineză -planta rubarbă. Acesta a fost retras de pe piață ca laxativ de US FDA în 2009 , datorită activității sale cancerigene. Dantron a indus moartea celulelor în celulele gliom de șobolan prin cai dependente C6 mitocondrii prin inducerea generarii de spcii reactive oxigen ROS, prăbușirea potențialului transmembranar mitocondrial și eliberarea citocromului c, FIA, Endo G și creșterea nivelurilor caspaza 3, 9[ 74 ].

3.8. flavopiridolul

Flavopiridolul, un inhibitor potent de ciclină kinaza dependentă este un flavon semisintetic, izolat inițial din Dysoxylum binectariferum , o plantă utilizată în medicina tradițională indiană. Flavopiridolul a demonstrat eficacitatea in multe tumori maligne solide și hematologice cu mai multe mecanisme de acțiune , cum ar fi oprirea ciclului celular și apoptoza și reglarea expresiei genetice [ 75 ]. Ew Newcomb și colab ., au demonstrat că flavopiridolul inhibă creșterea celulelor murine gliom GL261 atat in vitro si in vivo prin modificarea expresiei CDK4, ciclină D și p21and induce apoptoza prin mitocondrii mediate cale apoptotice. Flavopiridolul a provocat leziuni mitocondriale , cum ar fi umflarea mitocondriilor cu cristae deplasate și distorsionate și eliberarea indusă a citocromului c și translocarea nucleară a FIA [ 76 , 77 ].

3.9. xanthohumol

Xanthohumol este un constituent flavanoid prenilat major din flori de plante Hop ( Humulus lupus ) , care este utilizat ca materie primă în bere pentru a păstra și pentru a da aroma distincta. Descoperirile experimentale recente au identificat numeroase efecte biologice , inclusiv efectele chemopreventive și chimioterapeutice în mare varietate de tipuri de cancer [ 78]. In linia de celule de glioblastom uman T98G xanthohumol scăde viabilitătea celulara prin inducerea apoptozei prin calea dependentă mitocondrială de stres oxidativ. Xanthohumol a depolarizat mitocondrii și a declanșat tranziția permeabilității mitocondriale așa cum este evident prin eliberarea citocromului c și scăderea mitocondriilor proteinei asociate anti-apoptotice Bcl-2 conducând astfel la apoptoza mediată de caspază-9. S-a constatat că xanthohumol a indus generarea ROS si  a dus ulterior la efectele sale asupra evenimentelor apoptotice mediate mitocondriale [ 79].

3.10. shikonin

Shikonin este un pigment naftochinonă natural provenit de la Lithospermum erythrorhizon , o plantă care este frecvent utilizată în medicina tradițională chineză pentru tratamentul diferitelor stări inflamatorii. Rapoartele farmacologice recente sugerează că shikonin prezintă o acțiune puternică citotoxică în numeroase tipuri de tumori maligne. Acumulare selectivă a shikonin în mitocondrii și perturbarea  potențialului membranei mitocondriale au fost una dintre cele mai importante mecanisme ale morții celulare induse de shikonin în linia de celule de leucemie U937 [ 80 ]. Raportul de studiu de CH Chen et al., a indicat faptul că un mecanism dependent mitocondrii similar a fost implicat în activitatea antitumorală a shikonin în linii celulare de gliom. Tratamentul shikonin a indus generarea ROS , care duce în final la perturbarea potențialului membranei mitocondriale. Shikonin a declanșat perturbarea complexului II a lanțului de transport de electroni mitocondrial , care a condus la generarea de radicali superoxid cu origini mitocondriale . Generarea de ROS , de asemenea , a condus la epuizarea GSH – reglarea catalaze împreună cu  reglementarea in sus/cresterea SOD1, modularea proteinelor apoptotice înrudite familia Bcl-2  [ 81 , 82 ].

3.11. resveratrol

Resveratrolul, chimic trans-3,4,5-trihydroxystilbene este un phytoalexin dietetice prezente în cantități abundente în struguri,  vin roșu coacaze afine mure grephfruit etc. Dovezile acumulate sugereaza ca resveratrolul prezintă mai multe efecte farmacologice , cum ar fi antioxidant, antiinflamator, anti-îmbătrânire, chemopreventiv și efecte chimioterapeutice [ 83 ]. Resveratrolul a indus moartea celulelor prin declanșarea apoptozei în liniile de celule U251 gliom de cale dependente mitocondrial , împreună cu alte mecanisme , cum ar fi oprirea ciclului celular. Expunerea la resveratrol a declanșat eliberarea citocromului c, activat caspazei 9 , împreună cu reglementarea in sus/cresterea și translocarea membru al familiei pro-apoptotice Bax mitocondrială [ 84 ].

3.12. quercetin

Quercetin este un flavanoid alimentar care este prezent în cantități mari în fructe diferite fructe, legume, nuci și semințe. Studiile farmacologice au relevat potentialul quercetina ca agent anticancerigen în multe modele tumorale prin mecanisme multiple [ 85 ]. Quercetin a prezentat o acțiune antitumorală potenta în celulele U373 gliom prin inhibarea proliferării și inducerea apoptozei , după 48, 72 ore de tratament. Apoptoza a fost mediată prin mitocondriile ca evidenta prin creșterea activității caspazei 9 și caspazei 3 și creșterea clivajul proteinei poli ADP riboză  polimeraza (PARP poly ADP ribose polymerase (PARP) protein). Tratamentul anticancer cu Quercetin indus pierderea potențialului membranei mitocondriale , împreună cu reglarea în sus/cresterea și translocației p53 mitocondrială care are urmare , ca rezultat eliberarea citocromului din mitocondrii. Descoperirile experimentale au sugerat că , quercetin în stadiile inițiale a promovat autofagia citoprotector ;ca si combinație cu clorochina inhibitor autofagie a îmbunătățit în continuare efectele apoptozei prin ambele căi intrinsecă și extrinsecă [ 86 ]. Cu toate acestea, într – un studiu recent de LL Zamin et al ., a raportat că tratamentul quercetin 50mg / kg / zi a promovat la cresterea tumorii în modelul de gliom un șobolan. Efectele contrastante intre modele in vitro si in vivo  ar putea fi din cauza mai multe motive , cum ar fi concentrația scăzută a quercetinei în creier după tratament (0,53 pM în țesutul cerebral), efecte modulatoare asupra sistemului imunitar, stabilitate redusă și formarea de conjugate ale quercetinei in vivo [ 87 ].

3.13. Hydroxygenkwanin

Hydroxygenkwanin este una dintre flavanoidele bioactive izolate din boboci de flori de Daphne genkwa, o plantă care este frecvent utilizată în medicina tradițională chineză pentru varietate de boli inflamatorii [ 88]. Singur Hydoxygenkwonin, sau asocierea sa cu apigenina, un alt flavanoid a afișat efecte antigliom in vitro prin efecte modulatoare mitocondrii . Tratament combinat și singur, au exercitat anti-proliferative, efecte apoptotice asupra liniilor celulare de gliom de șobolan prin pierderea C6 a potențialului membranei mitocondriale, leziuni mitocondriale , cum ar fi umflarea mitocondriilor și dispariția cristae. La nivel molecular, supraexprimare Bid, Bak împreună cu reglarea în jos a/scaderea proteinelor Bcl-xl au fost observate în această abordare de tratament [ 89 ].

3.14. Alantolactone

Alantolactone este un compus sesquiterpene lactonă, izolată de la mai multe specii de plante medicinale , cum ar fi Inula helinium, Inula japonica, Aucklandia lappa, Radix Inulae etc. Alantolactone a demonstrat spectru larg de efecte farmacologice , cum ar fi antimicrobiene, antifungice, efecte anti – inflamatorii și anti – cancer [ 90 ] . Intr – un studiu recent, M Khan și colab ., au raportat că alantolactone a prezentat efecte de inhibare a creșterii in vitro în  linii celulare de gliom U87, U373, LN229 prin inducerea stresului oxidativ și disfuncția mitocondrială. In linia de celule U87, alantolactone a declanșat moartea celulelor apoptotice prin generarea de ROS care , la rândul său a condus la epuizarea GSH, disipare a potențialului membranei mitocondriale, oxidarea cardiolipin toate care culminează în moartea celulelor. La nivel molecular, tratamentul cu alantolactone a cauzat pana reglementarea p53, Bax si reglarea în jos a Bcl2 , împreună cu eliberarea citocromului c . Mai mult, alantolactone a sporit activitățile caspazei 9, 3  care indica apoptoza mediata de mitocondrii. Studiile in vivo au demonstrat că alantolactone traversează bariera hematoencefalică și nu au exercitat nici un efect hepatotoxic, nefrotoxic indicând promisiunea ca agent chimioterapeutic eficient în tratamentul glioamelor [ 91 ].

3.15. Campferol

Campferol, un fitoestrogen flavanoid prezentă în fructe și legume a fost raportat că posedă o mare varietate de efecte biologice , inclusiv antioxidant, antiinflamator, chemopreventiv și efectele chimioterapeutice [ 92]. Campferol a fost gasit pentru a induce apoptoza în celulele gliom U87MG, LN229, T98G. Efectele anticancer ale kaempferol in gliom se pot datora elevație stresului oxidativ intracelular, suprimarea captatorilor oxidant superoxid dismutaza (SOD-1), tioredoxină (TRX-I) și pierderea potențialului membranei mitocondriale,   scaderea expresiei  Bcl2. În plus  Campferol a inhibat migrarea celulelor gliom prin efect de modulare ROS. Mai mult, Campferol a amplificat doxorubicin -efectul citotoxic prin sporirea nivelului ROS și scăderea eflux celulare de doxorubicină [ 93 ].

3.16. Honokiol

Honokiol, un constituent bioactiv izolat din genul Mangolia a fost raportat că prezintă multiple acțiuni farmacologice , inclusiv anti-angiogeneza, anti-inflamator, efecte anti-proliferative. Intr – un studiu in celulele de glioblastom DBTRG-05MG, honokiol a gasit pentru a induce apoptoza prin  mediere cale apoptotica mitocondrii. Tratamentul  anticancer cu Honokiol a indus generarea ROS, a îmbunătățit eliberarea intracelulara de Ca ++ , a redus potențialul membranei mitocondriale, a eliberat citocrom c în citosol și a crescut  activitatea caspazei 9,3 [ 94 ]. Intr – un alt studiu, JJ Jeong și colab., au arătat că , de asemenea , honokiol a modulat proteinele  Bcl2 din familia apoptotica în inducerea apoptozei. Mai mult, honokiol se dovedește a avea capacitatea de a traversa bariera hemato – encefalică (BBB), si lichidul cerebrospinal arterial (BCSFB) sugerând potențialul său puternic în terapia tumorilor maligne cerebrale [ 95 ].

3.17. Parthenolidele

Parthenolidele, o lactonă sesquiterpena este principalul constituent bioactive din plantă Tanacetum parthenium (feverfew) [ 96 ]. Acesta inhibă factorul nuclear al lanțului ușor kappa beta (NF-kB) prin inhibarea inhibitorie kappa beta (IkB) kinaza precum și prin legarea directă a p65 în complexul NF-kB. Partenolidel a manifestat puternic caracter anti-invaziv, anti-angiogenetic si anti-proliferativ – efecte vazute in celulele de glioblastom in vitro. Implicarea semnalizarii mediate mitocondrial in inducerea apoptozei prin parthenolidelor a fost evidentă prin scăderea potențialului membranei mitocondriale, eliberarea citocromului c , împreună cu activarea caspazei 9 și 3. supraexprimare Bax, Bak, inclusiv reducerea expresiei Bcl2 de asemenea indică rolul mitocondriilor în efectele citotoxice ale parthenolidelor. In plus, in vivo , in model de șoarece glioblastomul xenogrefă intracerebral, parthenolidele au redus in mod eficient cresterea tumorii, procesele de angiogeneza care indică posibila utilizarea sa în terapia glioblastomul [ 97 , 98 ].

3.18. floretin

Floretin, un dihidrocalcona flavanoid prezent din abundență în mere  cunoscut că posedă multe proprietăți biologice interesante , cum ar fi anti-aterosclerotic, antioxidant, activități antimicrobiene [ 99 , 100]. Floretin este un bine cunoscut activator de canal BK (canale funcționale de potasiu mare)  și a fost raportat a provoca un efect citotoxic in  celulele  gliom U251, T9. Floretin induce umflarea celulară și vacuolizare la ore inițiale ale tratamentului , împreună cu reticulul mitocondrial și endoplasmatic ,umflare datorită dezechilibrului osmotic creat prin deschiderea canalelor BK. Această deteriorare asupra mitocondriilor duce la pierderea de ATP, peste exprimarea proteinelor de șoc termic Hsp 60, 70, 90 , care a progresat citotoxice efecte în celulele gliom și eliberarea de semnale de pericol , cum ar fi grupul de mobilitate înaltă box-1 (-1 HMGB) proteină care creste imunitatea tumorii [ 101 , 102 ].

3,19. gossypol

Gosipol, un compus polifenolic natural obținut din semințe de bumbac este raportat ca BH3 mimetic cu acțiunea inhibitoare Pan Bcl-2 . Proteinele din familia Bcl2 suprima atat apoptoza si autofagia. Investigațiile farmacologice au arătat că gosipol induce moartea celulelor prin autofagie , impreuna cu inducerea disfunctie mitocondriale la U87, U373, MZ-54 – linii de celule glioblastom. Tratamentul anticancer natural cu Gossypol cauzat scăderea potențialului membranei mitocondriale , împreună cu eliberarea citocromului c [ 103 ]. În plus față de faptul că, Gosipol a augmentat/imbunatatit acțiunea citotoxică a temozolimid in vivo modelele  gliom DBTRG-05MG și , de asemenea , a aratat proprietati angiogeneza si anti  anti invazive in monoterapie si in asociere in vitro [ 104]. Gosipol a fost testat în studiile clinice la pacienții cu tumori gliale si sa dovedit a fi bine tolerat la doza de PO licitată 10 mg. Acest tratament a afișat răspuns scăzut, măsurabil la pacienții deja tratați anterior cu tumori recurente care sunt asociate cu prognostic prost [ 105 ]. Mai mult decât atât, Gosipol a fost testat de asemenea și în alte studii clinice 2 faza precoce I) ca agent unic in faza 2 studiu la pacientii cu progresiv / GBM recurente (NCT00540722), II) în combinație cu temozolimid (TMZ) cu / fara radioterapie in faza 1 studiu la pacientii cu GBM nou diagnosticate (NCT0I0390403). Deși aceste studii clinice au fost finalizate, rezultatele de până acum nu au fost accesibile [ 104 ].

3.20. berberina

Berberina este un alcaloid izochinolina natural izolat din diferite plante medicinale Berberis vulgaris, Berberis aquifolium, Berberis aristata, Hydrastis canadensis și Tinospora cordifolia . Este afișată o varietate de efecte farmacologice incluzând antioxidant, antimicrobian, antihelmintice și efecte antitumorale [ 106 ]. Berberina a demonstrat remarcabile efecte anti gliom în diferite modele in vitro și in vivo  prin mecanisme multiple , cum ar fi medierea apoptoza mitocondrii, oprirea ciclului celular G1 și inducerea senescenței și stresului reticulului endoplasmatic. In celulele T98G, berberina a redus viabilitatea celulară prin generarea ROS îmbunătățită și creșterea intracelulare de niveluri Ca 2+. Activarea semnificativă a căii apoptotice mitocondriale  dependente a fost de asemenea observată în  celule T98G tratate cu berberina ca evidente de pierdere a potențialului membranei mitocondriale, îmbunătățirea raportului Bax /  Bcl-2 și creșterea activității caspazei 9,3. Mai mult, tratamentul anticancer natura cu berberina a aratat , de asemenea , proprietăți anti-invazive și anti-metastazare și a inhibat creșterea tumorii [xenogrefe 107 – 109]. Intr – un studiu recent, derivați ai mitocondriotropice berberina, sintetizate prin adăugarea de lanțuri alchil cu lungime moderată au demonstrat eficacitate în inhibarea proliferării celulelor de gliom la gama micromolar scăzută , împreună cu supresia potenta a invaziei și a metastazelor. Acești derivați au sporit lipofilicitatea și s-au localizat în mitocondrii și au generarea declanșat ROS  [ 110 ].

Literatura in crestere sugerează proprietatea prooxidantă a phytoconstituentilor adică, capacitatea de a oxida sistemul celular depind de numeroși factori , cum ar fi concentrarea, prezența ionilor metalici și pH [ 111 ] .de obicei la concentrații mai mari și în prezența ionilor metalici, fitochimicale au exponat această proprietate generatoare de cantități de ROS consolidate in  sistemele biologice in vitro. De exemplu, curcumin la 25100 pM a crescut semnificativ nivelurile celulare ROS in celulele Hep3B hepatom uman într -o manieră dependentă de timp [ 112 ]. Această proprietate este prooxidantă recent atribuita ca unul dintre mecanismele majore pentru proprietățile antitumorale ale polifenolilor din plante [ 113]. Mai mult decât atât, citotoxicitatea selectivă a multor fitoconstituenti ar putea fi mediate prin acțiunea prooxidantă acestor compuși ca celulele canceroase sunt mai vulnerabile la citotoxicitatea mediată de ROS decât omologii lor -celule normale [ 114 ].

4. compuși naturali pentru tratamentul Glioamele: Obstacole translaționale

Până în prezent, majoritatea acestor compuși naturali cu excepția Gosipol sunt în curs de evaluari preclinice pentru eficacitatea lor pentru activitatea anti-gliom, siguranța și efectele lor asupra metabolismului. Traducerea acestor posibili agenți chimioterapeutici de la standul de la clinica pentru tratamentul Gliomul oferă multe provocări , cum ar fi biodisponibilitatea, permeabilitatea barierei hematoencefalice BBB, selectarea regim de dozare optime , etc. Conform noilor reglementări stricte de brevet SUA și Mărci (USPTO) pentru brevete biologice , ar trebui să fie stabilită o schemă de dozaj complet pentru tratamentul unei boli pentru un compus natural care este atât  costisitoare și consumatoare de timp pentru a le face brevetabile. Prin urmare ,
testele preclinice privind diferite aspecte , cum ar fi farmacocinetica, farmacodinamica, efecte de toxicitate , atât in vitro șiin vivo , inclusiv genotoxicitate, mutagene și farmacologice de siguranță sunt necesare pentru a fi efectuate pentru a obține aprobat de Food and Drug Administration (FDA) și de a intra în piețele clinice [ 115 ]. Din ce în ce dovezi sugerează că multe dintre aceste produse naturale menționate mai sus sunt bine tolerate fără efecte toxice semnificative de organe , în ambele studii pe animale și umane la doze farmacologice116 , 114 ]. Cu toate acestea, programul de dozare și calea de administrare sunt de asemenea cruciale pentru a stabili biodisponibilitate, eficacitatea și complianța pacientului în studiile clinice , fără efecte toxice semnificative și , astfel , trebuie să fie determinate cu atenție.

Biodisponibilitate orală slabă este un obstacol major pentru o serie de produse naturale pentru utilitatea lor clinice [ 117 ]. Solubilitatea, permeabilitatea membranei GatroIntestinale, metabolismul și stabilitatea chimică a contribuit ca factori importanți pentru biodisponibilitatea lor scăzută. De exemplu, rezultatele din ambele studii umane si animale demonstrează concentrațiile plasmatice mai mici ale curcumin după ingestia sa orală. Solubilitate scăzută în apă, metabolism rapid și eliminarea sistemică rapidă sunt factorii principali care contribuie la mai puțin de biodisponibilitate a curcuminei [ 118]. Mulți cercetători au făcut mai multe încercări de a spori biodisponibilitatea compușilor naturali prin diferite abordări , cum ar fi administrarea concomitentă cu alți compuși naturali , cum ar fi piperina, administrarea nanoparticulă, formulări noi cu utilizarea miceliilor, complexe de fosfolipide și dezvoltarea de analogi structurali și bioconjugati [ 119]. Cale parenterala de administrare elimină necesitatea solubilitatea în apă corespunzătoare și permeabilitatea prin membrana gastrointestinala , prin urmare , poate fi utilă în cazurile în care compușii naturali au absorbție orală slabă. Cu toate acestea, în rutele parentale de administrare , cum ar fi intraperitoneal și intravenos, timpii de înjumătățire a compușilor în plasmă sunt afectati de rata de metabolism și excreție și modelele lor de distribuție tisulară. În multe cazuri, acești compuși naturali polifenolici sunt supusi fazei a II -a metabolismului și aceste conjugate au perioade de înjumătățire rezonabile în plasmă și pot hidroliza la compușii de bază asigurând astfel eficacitatea clinică [ 117]. Aplicarea clinică a acestor abordări menționate mai sus și căi alternative de administrații ar putea spori fracțiunea biodisponibilă a compusului administrat și îmbunătăți eficacitatea biologică în studiile clinice.

Un alt factor important pentru terapia eficace de succes in Glioamele este capacitatea de a traversa BloodBrainBarier – barieră fiziologică formată prin joncțiunile strânse dintre celulele endoteliale capilare. Numai molecule mici ( de obicei 400- 500 Daltoni) , cu caracter lipofil adecvat și taxa difuza prin BBB în timp ce compușii mari cu> 1 kilodaltoni nu sunt în măsură să pătrundă prin BBB [ 120]. Mai multe abordări de livrare au fost investigate pentru a îmbunătăți livrarea compușilor prin BBB. Printre acestea, abordarea invazivă include diverse metode, cum ar fi încălcarea fizica a BBB si injectarea sau implantarea medicamentului în creier prin injectare intra cerebroventriculare , convenție îmbunătățită livrarea și utilizarea implanturilor intracerebrală. Mai mult, modificări ale structurii compusului pentru a spori lipofilicitate sale, utilizarea purtătorilor lipidice au fost de asemenea folosite cu succes pentru a trece BBB. O abordare alternativă; Abordarea fiziologică profită de receptori exprimați în BBB pentru a facilita transcitoză mediată de receptor. lipirea/tagging cu liganzi endogeni sau anticorpi care țintesc la acei receptori, cum ar fi receptor de transferină, receptorilor de insulina, receptorul LDL,receptorii nicotinici ai acetilcolinei au fost evaluate pentru a mări livrarea creierului cu compuși terapeutici [121 , 122 ].

 livrarea locala a medicamentelor în glioamele prin metode cum ar fi , fie prin injectare în bolus sau perfuzie continuă directă și metode de eliberare controlată folosind purtători permit livrarea directă a medicamentului în tumori si au atins o eficacitate maximă [ 123 ]. Această metodă oferă avantaje , cum ar fi toxicitatea sistemică mai mică datorită cerinței minime a dozei și permite intrarea de medicamente hidrofile moleculare mari pentru tumorile care au mai mici proprietăți de difuzie BBB. Puține medicamente chimioterapice și proteine , cum ar fi TNF-α au fost injectate în glioamele direct în studiile clinice. Totuși nici unul dintre phitoconstituentii menționate mai sus nu au fost administrate direct în glioame [ 124]. Dezavantajele acestei administrare includ respectarea inferior pacientului, posibilele sanse de hemoragie intracraniană, toxicitatea asupra sistemului nervos central și infecție. Aceste limitări pot fi , eventual , evitate prin selectarea program de dozaj optim și utilitatea celor mai bune practici chirurgicale si ingrijirea pacientului si utilizarea unor metode avansate  [ 125 ]. Astfel , testarea compușilor noi in modele in vitro si in vivo  pentru a verifica capacitatea lor de a traversa BBB si implementarea unor strategii , cum ar fi livrare cu metode noi pentru a spori livrarea lor în creier este necesară pentru a atinge rezultatul terapeutic dorit in tratamentul tumori creier .

În cazul în care provocările clinice  menționate mai sus sunt abordate în mod adecvat , prin efectuarea pe scară largă de studii clinice controlate cu acesti compusi naturali deschide o cale pentru utilizari la clinici. Toti acesti fitoconstituenti au prezentat o acțiune puternic anti-gliom in studiile preclinice , prin multitudinea de efecte biologice , cum ar fi scăderea viabilității celulare, inducerea apoptozei, inhibarea invaziei și a migrației. Mai mult decât atât, acestea sporesc , de asemenea , activitatea anticanceroasă în gliom atunci când sunt administrate în asociere cu alte medicamente standard , cum ar fi temozolimid și TRAIL.  Interesant , Expresia funcțională a pompei P-glicoproteină (P-gp), o pompă de eflux care extrudează droguri a fost observată în celulele creierului endoteliale in BBB [ 126]. În plus, intensificarea efectelor SNC ale medicamentelor , cum ar fi loperamida, metadonă (substraturi ale P-gp) a fost observată atunci când sunt administrate concomitent cu inhibitori ai glicoproteinei P , cum ar fi chinidină, verapamil [ 127 , 128 ]. numeroasi fitoconstituenti , cum ar fi quercetina, kaempferol au fost raportati pentru a inhiba P-gp, posibila luarea in considerare a strategiilor de combinație de agenți chimioterapeutici care sunt substraturi ale P-gp , împreună cu aceste fitochimicale ar putea fi benefice în creșterea permeabilității terapeuticii antineoplazice , astfel pot prezenta  sinergic efecte anticanceroase [ 129]. În opinia acestor atribute, acesti fitocostituenti pot fi utilizati direct ca terapia medicamentoasă sau adjuvanti în asociere cu alte medicamente chimioterapice standard, pentru a obține rezultatul terapeutic dorit.

5. directii de viitor

Studii recente s- au concentrat pe descoperirea si sinteza compușilor care sunt capabili de  accesarea selectiva mitocondriala – mitochondriotropics- cu scopul fie de inducere sau de a preveni moartea celulară [ 130]. Mitocans- o clasă de astfel de mitochondriotropics- sunt agenții anti cancer care  tintesc selectiv mitocondriile, le destabilizeaza și astfel prezintă citotoxicitate [ 131]. Multe  produse naturale țintest mitocondriile la mai multe noduri , cum ar fi interacțiunea directă cu molecule – cheie în mitocondrii sau modificarea indirectă a consecințelor metabolice apar ca urmare a unor disfuncții mitocondriale. direcționărea selectiva in continuare a unor astfel de compuși naturali pentru a spori eficacitatea lor ca agenți antitumorali a fost realizata prin marcarea acestora cu membrane cationi -permeant precum fosfoniu trifenil (TPP) , care se localizează în mod selectiv în regiuni cu potențial negativ.Recent, astfel mitocondrii orientate de compusi naturali , cum ar fi resveratrol, quercetin, vitamina E au fost preparate și raportate ca au consolidat acțiunea citotoxică selectivă datorită producerii lor de  ROS îmbunătățită și țintirea specifică a componentelor mitocondriale în varietate de tumori maligne [ 132 – 134]. Investigații viitoare ale unor astfel de mitocans sunt foarte justificate atat in modele de Gliom in vitro si in vivo. Succesul clinic de agenți anticancer depinde , de asemenea , un factor important „indice terapeutic“ , adică, selectivitatea dintre direcționarea în funcție de cancer si celulele normale. Prin urmare , identificarea și exploatarea diferențelor între celulele canceroase și celulele normale , cum ar fi
ROS crescute, echilibru anormal sistem antioxidant, mitocondriile dereglate mediate de semnalizare apoptotice in celulele canceroase , in comparatie cu celulele normale sunt necesare pentru terapia sigura si eficace in tintirea disfuncției mitocondriale.

6. Concluzii

Mitocondriile sunt ținte atractive farmacologice datorită rolurilor lor notabile în metabolismul celular, reglarea semnalizării redox, homeostazia de ioni și inducerea mecanismului morții celulelor apoptotice.

Glioamele ascund frecvent modificari mitocondriale, cum ar fi trecerea de la fosforilării oxidative la glicolizei (efectul Warburg), stres oxidativ sporit, anomalii ale potentialului membranei mitocondriale si mașinile apoptotice, mutatiile genomului mitocondrial , impreuna cu mutatii somatice in ciclu acid al  genei IDH tricarboxilice ( tricarboxylic
acid cycle gene IDH) . Derivate fitochimicale din plante  țintesc  mitocondriile prin legarea , fie direct la componentele mitocondriale sau care afectează indirect alterările metabolice , ca urmare a disfuncției mitocondriale. Direcționarea și perturbarea lanțului de transport de electroni mitocondrial prin inhibarea selectivă a diferitilor complecși de lanț de transport de electroni, sporirea nivelului ROS, perturbarea sistemului antioxidant celular, țintirea  proteine de familie Bcl2 anti-apoptotice și canale de ioni in membrana mitocondriilor sunt unele mecanisme identificate acțiunea  compuși naturali ce vizaza mitocondriile. Acești compuși naturali au demonstrat efect promitator in tratamentul Gliomul in in vitro si in vivo prin efectele lor specifice mitocondrii și, astfel, justifica in continuare dezvoltarea de studi preclinice si clinice in tratamentul Gliom. observație critică a modelelor de farmacocinetică, biodisponibilitate și distribuția tisulară fiecărui compus și implementarea metodelor inovatoare pentru a mări biodisponibilitatea lor sunt foarte garantate pentru succesul lor clinic.

Fig. (3)

Provocări Traslational și soluții posibile pentru compușii naturali pentru a intra în clinică pentru administrarea Gliomul (BBB- Blood Brain Barrier).

confirmările

Autorii ar dori să-i mulțumesc Departamentul de farmaceutice, Ministerul substanțelor chimice și a fertilizanților, Guvernul Indiei pentru sprijin financiar pentru cercetare oamenii de știință Lalita Guntuku și Veera Ganesh Yerra.

Conflict de interese

Autorii confirmă faptul că acest conținut articol nu are nici un conflict de interese.

REFERINȚE

1. GLOBOCAN 2012 v1.0. Incidenta cancerului si mortalitate la nivel mondial: IARC CancerBase No. 11 [Internet]. Agenția Internațională de Cercetare a Cancerului. 2013
2. Ostrom QT, Gittleman H., Liao P., Rouse C., Chen Y., Dowling J., Wolinsky Y., Kruchko C., raport statistic Barnholtz-Sloan J. CBTRUS: creier primare și tumori ale sistemului nervos central diagnosticat în statele Unite în 2007-2011. Neuro-Oncol. 2014; 16 (Suppl . 4): IV1-IV63. [http://dx.doi.org/10.1093/
neuonc / nou223]. [PMID: 25304271].
 Articol gratuit PMC ] PubMed ]
3. Edick MJ, Cheng C., Yang W., Cheok M., Wilkinson MR, Pei D. Evans WE, Kun LE, Pui CH, expresia genei Relling MV limfoid ca predictor al riscului de tumori cerebrale secundare. Gene Cromozomi Cancer. 2005;42 (2): 107-116. [http://dx.doi.org/10.1002/gcc.20121]. [PMID: 15543619]. PubMed ]
4. Ostrom QT, Gittleman H., Stetson L., Virk SM, Barnholtz-Sloan JS Înțelegere actual si tratamentul Gliomul. Springer; 2015. Epidemiologie gliomelor. pp. 1-14.
5. Ohka F., Natsume A., Wakabayashi T. Tendințe actuale în terapii specifice pentru glioblastom multiform. 2012. PMC articol gratuit ] PubMed ]
6. Brennan C., Momota H., Hambardzumyan D., Ozawa T., Tandon A., Pedraza A., subclasele Holland E. glioblastomul poate fi definită prin activitate între caile de transductie a semnalului si modificari genomice asociate. PLoS Unul. 2009; 4 (11): e7752. [http://dx.doi.org/10.1371/journal.pone.0007752]. [PMID: 19915670]. Articol gratuit PMC ] PubMed ]
7. Verhaak RG, Hoadley KA, Purdom E., Wang V., Qi Y., Wilkerson MD, Miller CR, Ding L., Golub T., Mesirov JP, Alexe G., Lawrence M., O’Kelly M. , Tamayo P., Weir BA, Gabriel S., Winckler W., Gupta S., Jakkula L., Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C., Kahn A., Spellman PT, Wilson RK, Viteza TP, Gray JW, Meyerson M., Getz G., Pérou CM, analiza genomica Hayes DN integrată identifica subtipuri relevante clinic ale glioblastomului caracterizate prin anomalii in PDGFRA, IDH1, EGFR și NF1. Cancer Cell. 2010; 17 (1): 98-110. [http://dx.doi.org/10.1016/ j.ccr.2009.12.020]. [PMID: 20129251]. Articol gratuit PMC ] PubMed ]
8. Conroy S., Kruyt FA, Joseph JV, Balasubramaniyan V., Bhat KP, Wagemakers M., Enting RH, Walenkamp AM, den Dunnen WF subclasificării glioblastoamelor nou diagnosticate printr – o abordare imunohistochimică. PLoS Unul. 2014; 9 (12): e115687. [http://dx.doi.org/10.1371/journal.pone.0115687]. [PMID: 25546404]. Articol gratuit PMC ] PubMed ]
9. Motomura K., Natsume A., Watanabe R., Ito I., Kato Y., Momota H., Nishikawa R., Mishima K., Nakasu Y. Abe T., Namba H., Nakazato Y., Tashiro H., Takeuchi I., T. Mori, Wakabayashi T. imunohistochimică bazate pe analiza subclasificării proteomica glioblastoamelor nou diagnosticate. Cancer Sci. 2012; 103 (10): 1871-1879. [http://dx.doi.org/10.1111/j.1349-7006. 2012.02377.x]. [PMID: 22747609]. PubMed ]
10. Ranjit M., Motomura K., Ohka F., Wakabayashi T., Natsume A. avansuri aplicabile in patologia moleculara a glioblastomul. Brain tumorii Pathol. 2015; 32 (3): 153-162. [http://dx.doi.org/
10.1007 / s10014-015-0224-6]. [PMID: 26078107].
 PubMed ]
11. McLendon R., Friedman A., Bigner D., Van Meir EG, Brat DJ, Mastrogianakis GM, Olson JJ, Mikkelsen T., Lehman N., Aldape K. Caracterizarea genomică Comprehensive defineste genele glioblastom umane si cai de bază. Natură. 2008; 455 (7216): 1061-1068. [http://dx.doi.org/10.1038/nature07385]. [PMID: 18772890]. PubMed ]
12. de Groot JF, Gilbert MR obiective moleculare noi în glioamele maligne. Curr. Opin. Neural. 2007; 20 (6): 712-718. [http: //dx.doi.
org / 10.1097 / WCO.0b013e3282f15650]. [PMID: 17992095].
 PubMed ]
13. Brown GC, Cooper CE, Nicholls DG Mitocondriile și moartea celulelor. Portland. 1999; 7 (1): 134-135.
14. Barbosa IA, Machado NG, Skildum AJ, Scott PM, Oliveira PJ mitocondrial remodelarea în metabolismul cancerului si de supravietuire: potential pentru noi terapii. Biochimica et Biophysica Acta (BBA) -. Rev. Can. 2012; 1826 (1): 238-254. PubMed ]
15. Weinberg SE, Chandel NS Direcționarea metabolismului mitocondrie pentru terapia cancerului. Nat.Chem. Biol. 2015; 11 (1): 9-15. [http://dx.doi.org/10.1038/nchembio.1712]. [PMID: 25517383].Articol gratuit PMC ] PubMed ]
16. Katsetos CD, Anni H., disfuncția Dráber P. mitocondrială în glioame. Semin. Pediatr. Neural. 2013; 20 (3): 216-227. [http://dx.doi.org/10.1016/j.spen.2013.09.003]. [PMID: 24331363]. PubMed ]
17. Arismendi-MORILLO G. Microscopia electronică morfologie a rețelei mitocondriale în glioamele și mediul lor micro- vascular. Biochimica et Biophysica Acta (BBA) -. Bioenergetic. 2011; 1807 (6): 602-608. [http://dx.doi.org/10.1016/j.bbabio.2010. 11.001]. PubMed ]
18. Vander Heiden MG, Cantley LC, Thompson CB Înțelegerea efectul Warburg: cerințele metabolice ale proliferării celulare. Ştiinţă. 2009; 324 (5930): 1029-1033. [http: // dx. doi.org/10.1126/science.1160809]. [PMID: 19460998]. Articol gratuit PMC ] PubMed ]
19. Seyfried TN, Sanderson TM, El-ABBADI MM, McGowan R., Mukherjee P. Rolul organismelor de glucoză și cetonă în controlul metabolic al cancerului cerebral experimentale. Br. J. Cancer. 2003; 89 (7): 1375-1382. [http://dx.doi.org/10.1038/sj.bjc.6601269]. [PMID: 14520474]. Articol gratuit PMC ] PubMed ]
20. Nebeling LC, Miraldi F., Shurin SB, Lerner E. Efectele unei diete ketogenic asupra metabolismului tumorii și statusului nutrițional la pacienții oncologie pediatrică: două rapoarte de caz. J. Am. Coll. Nutr. 1995; 14(2): 202-208. [http://dx.doi.org/10.1080/07315724.1995. 10718495]. [PMID: 7790697]. PubMed ]
21. Mukherjee P., Abate LE, Seyfried TN efecte antiangiogenic si proapoptotice de restrictie dietetice pe mouse – ul experimentale si tumorile creierului uman. Clin. Cancer Res. 2004; 10 (16): 5,622 – 5,629. [http://dx.doi.org/10.1158/1078-0432.CCR-04-0308]. [PMID: 15328205]. PubMed ]
22. Jelluma N., Yang X., Stokoe D., Evan GI, Dansen TB, Haas-Kogan DA Glucose retragere induce stresul oxidativ urmat de apoptoza in celulele de glioblastom , dar nu în astrocite umane normale. Mol. Cancer Res. 2006; 4 (5): 319-330. [http://dx.doi.org/10.1158/1541-7786.MCR-05-0061]. [PMID: 16687487].PubMed ]
23. Leonardi R., Subramanian C., Jackowski S., Rock CO Cancer asociate mutațiilor isocitrate dehidrogenaza inactiva-dependente NADPH carboxilare reductive. J. Biol. Chem. 2012; 287 (18): 14615-14620. [http://dx.doi.org/10.1074/jbc.C112.353946]. [PMID: 22442146]. Articol gratuit PMC ] PubMed ]
24. Balss J., Meyer J., Mueller W., Korshunov A., Hartmann C., von Deimling A. Analiza IDH1 codonului 132 mutatie in tumorile cerebrale. Acta Neuropathol. 2008; 116 (6): 597-602. [http://dx.doi.org/10.1007/s00401-008-0455-2]. [PMID: 18985363]. PubMed ]
25. Ward PS, Patel J. Wise DR, Abdel-Wahab O., Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M., Su SM, Sharp KA, Levine RL, Thompson CB caracteristica comună a IDH1 asociate leucemiei si mutatii IDH2 este o activitate enzimatică neomorphic conversie α-cetoglutarat la 2-hydroxyglutarate. Cancer Cell. 2010; 17 (3): 225-234. [http://dx.doi.org/10.1016/j.ccr.2010.01.020]. [PMID: 20171147]. Articol gratuit PMC ] PubMed ]
26. Krell D., Assoku M., Galloway M., Mulholland P., Tomlinson I., Bardella C. Screen pentru mutatii IDH1, IDH2, IDH3, D2HGDH si L2HGDH in glioblastom. PLoS Unul. 2011; 6 (5): e19868. [http://dx.doi.org/10.1371/journal.pone.0019868]. [PMID: 21625441]. Articol gratuit PMC ] PubMed ]
27. Evan GI, Voudsen KH Proliferare, ciclului celular si apoptoza in cancerul. Natură. 2001; 411 (6835): 342-348. [http://dx.doi.org/10. 1038/35077213]. [PMID: 11357141]. PubMed ]
28. Johnstone RW, Ruefli AA, Lowe SW Apoptoza: o legatura intre genetica cancerului si chimioterapie. Cell.2002; 108 (2): 153-164. [http://dx.doi.org/10.1016/S0092-8674(02)00625-6]. [PMID: 11832206]. PubMed ]
29. Villunger A., Michalak EM, Coultas L., Müllauer F., Böck G., Ausserlechner MJ, Adams JM, Strasser A. p53- și răspunsurile apoptotice induse de medicamente mediate de BH3 numai proteine puma și noxă. Ştiinţă.2003; 302 (5647): 1036-1038. [http: //dx.doi.
org / 10.1126 / science.1090072]. [PMID: 14500851].
 PubMed ]
30. Reifenberger J., Ring GU, Gies U., Cobbers L., Oberstrass J., An HX., Niederacher D., Wechsler W., Reifenberger G. Analiza mutației p53 si amplificarea receptorului factorului de creștere epidermal în glioame recurente cu progresia bolii maligne. J. Neuropathol. Exp. Neural. 1996; 55 (7): 822-831. [http: //dx.doi.
org / 10.1097 / 00005072-199607000-00007]. [PMID: 8965097].
 PubMed ]
31. Krajewski S., Krajewska M., Ehrmann J., Sikorska M., Lach B., Chatten J., analiza Reed JC imunohistochimică de Bcl-2, Bcl-X, Mcl-1, și Bax în tumorile centrale și originea sistemului nervos periferic.A.m. J. Pathol. 1997; 150 (3): 805-814. [PMID: 9060818]. Articol gratuit PMC ] PubMed ]
32. Nakasu S., Nakasu Y., Nioka H., Nakajima M., Handa J. bcl-2 expresia proteine in tumori ale sistemului nervos central. Acta Neuropathol. 1994; 88 (6): 520-526. [http://dx.doi.org/10.1007/ BF00296488]. [PMID: 7879598]. PubMed ]
33. Libermann TA, Nusbaum HR, Rezon N., Kris R., I. Lax, Soreg H., Whittle N., Waterfield MD, Ullrich A., Schlessinger J. Amplification, expresie îmbunătățită și posibila rearanjare a genei receptorului EGF în tumori primare ale creierului uman de origine glială. Natură. 1985; 313 (5998): 144-147. [http://dx.doi.org/10. 1038 / 313144a0]. [PMID: 2981413]. PubMed ]
34. Ordys BB, Launay S., Deighton RF, McCulloch J., Whittle IR Rolul mitocondriilor în fiziopatologia gliom.Mol. Neurobiol. 2010; 42 (1): 64-75. [http://dx.doi.org/10.1007/s12035-010-8133-5]. [PMID: 20414816].PubMed ]
35. Schlame M., Rua D., Greenberg ML Biosinteza și rolul funcțional al cardiolipina. Prog. Res lipidelor. 2000; 39 (3): 257-288. [http://dx.doi.org/10.1016/S0163-7827(00)00005-9]. [PMID: 10799718]. PubMed ]
36. Fry M., cerința Verde DE Cardiolipin pentru transferul de electroni în complexul I și III al lanțului respirator mitocondrial. J. Biol. Chem. 1981; 256 (4): 1874-1880. [PMID: 6257690]. PubMed ]
37. Kiebish MA, Han X., Cheng H., Chuang JH, Seyfried TN anticardiolipinici și transportului de electroni anomalii de lanț în mitocondrii tumoare pe creier de șoarece: dovezi lipidomic susținerea teoriei Warburg a cancerului. J. Lipid Res. 2008; 49 (12): 2545-2556. [http://dx.doi.org/10.1194/jlr.M800319-JLR200]. [PMID: 18703489]. Articol gratuit PMC ] PubMed ]
38. Carre M., André N., Carles G., Borghi H., Brichese L., Briand C., Braguer D. tubulinei este o componentă inerentă a membranelor mitocondriale care interacționează cu canalul de anioni dependent de voltaj. J. Biol. Chem. 2002; 277 (37): 33664-33669. [http: // dx. doi.org/10.1074/jbc.M203834200]. [PMID: 12087096]. PubMed ]
39. Sheldon KL, Maldonado EN, LeMasters JJ, Rostovtseva TK, Bezrukov SM Fosforilarea canalului anion voltaj dependente de serin / treonin kinaze guvernează interacțiunea cu tubulina. PLoS Unul. 2011; 6 (10): e25539. [http://dx.doi.org/10.1371/ journal.pone.0025539]. [PMID: 22022409]. Articol gratuit PMC ]PubMed ]
40. Mariani M., Shahabi S., Sieber S., Scambia G., Ferlini C. Clasa III β-tubulina (TUBB3): mai mult de un biomarker in tumorile solide? Curr. Mol. Med. 2011; 11 (9): 726-731. [http://dx.doi.org/10.2174/ 156652411798062368]. [PMID: 21999149]. PubMed ]
41. Maldonado RO, Patnaik J., Mullins MR, LeMasters JJ tubulina Free modulează potențial membranar mitocondrial în celulele canceroase. Cancer Res. 2010; 70 (24): 10192-10201. [http://dx.doi.org/
10.1158 / 0008-5472.CAN-10-2429]. [PMID: 21159641].
 Articol gratuit PMC ] PubMed ]
42. Friedman JR, Webster BM, Mastronarde DN, Verhey KJ, Voeltz GK ER dinamica de alunecare și a contactelor ER-mitocondriali apar pe microtubuli acetilate. J. Cell Biol. 2010; 190 (3): 363-375. [http://dx.doi.org/10.1083/jcb.200911024]. [PMID: 20696706]. Articol gratuit PMC ] PubMed ]
43. Levine B. Cell Biology: autophagy si cancer. Natură. 2007; 446 (7137): 745-747. [http://dx.doi.org/10.1038/446745a]. [PMID: 17429391]. PubMed ]
44. Kim EH, Choi KS Un rol critic al anionului superoxid în moartea celulelor mitophagic induse de selenit. Autophagy. 2008; 4 (1): 76-78. [http://dx.doi.org/10.4161/auto.5119]. [PMID: 17952022]. PubMed ]
45. Gong A., Ye S., Xiong E., Guo W., Zhang Y., Peng W., Shao G., Jin J., Zhang Z., Yang J., Gao J. Autophagy contribuie la ING4- a indus moartea celulelor gliom. Exp. Cell Res. 2013; 319 (12): 1714-1723. [http://dx.doi.org/10.1016/j.yexcr.2013.05.004]. [PMID: 23684856]. PubMed ]
46. Menon VP, Sudheer AR Țintele moleculare și utilizările terapeutice ale curcuminei in sanatate si boala. Springer; 2007. antioxidante și proprietăți anti-inflamatorii ale curcumina. pp. 105-125. [http://dx.doi.org/10.1007/978-0-387-46401-5_3]
47. Youns M., Fathy GM suprareglarea căii apoptotice extrinsecă în efect antiproliferativ mediat de curcumina asupra carcinogenezei pancreatice umane. J. Cell. Biochem. 2013; 114 (12): 2654-2665. [http://dx.doi.org/10.1002/jcb.24612]. [PMID: 23794119]. PubMed ]
48. Karmakar S., Banik NL, Ray SK curcumin suprimat semnale anti-apoptotice și cistein proteaze activate pentru apoptoză în celulele de glioblastom U87MG umane maligne. Neurochem. Res. 2007; 32 (12): 2103-2113. [http://dx.doi.org/10.1007/s11064-007-9376-z]. [PMID: 17562168]. PubMed ]
49. Gao X., Deeb D., Jiang H., Liu YB, Dulchavsky SA, Gautam SC curcumin sensibilizează celulele gliom malign diferentiat la TRAIL apoptoza / Apo2L mediată prin activarea procaspases și eliberarea citocromului c din mitocondria. J. Exp. Ther. Oncol. 2005; 5 (1): 39-48. [PMID: 16416600]. PubMed ]
50. Karmakar S., Banik NL, Patel SJ, Ray SK curcumin activat ambele receptorilor mediate și mediat de mitocondrii cai proteolitice pentru apoptoza in celulele glioblastom T98G umane. Neurosci. Lett. 2006; 407(1): 53-58. [http://dx.doi.org/10. 1016 / j.neulet.2006.08.013]. [PMID: 16949208]. PubMed ]
51. Morin D., Barthélémy S., Zini R., Labidalle S., Tillement JP. Curcumina induce mitocondriale porilor de tranziție a permeabilității mediată de proteină de membrană de oxidare tiol. FEBS Lett. 2001; 495 (1-2): 131-136. [http://dx.doi.org/10.1016/S0014-5793(01) 02376-6]. [PMID: 11322961]. PubMed ]
52. Sinha S., Pal BC, jagadeesh S., Banerjee PP, Bandyopadhaya A., Bhattacharya S. Mahanine inhibă creșterea și induce apoptoza în celulele cancerului de prostata , prin dezactivarea Akt și activarea caspazelor. Prostată. 2006; 66 (12): 1257-1265. [http://dx.doi.org/10.1002/pros.20415]. [PMID: 16683271].PubMed ]
53. Roy MK, Thalang VN, Trakoontivakorn G., Nakahara K. Mahanine, un alcaloid carbazol din Micromelum minutum, inhibă creșterea celulară și induce apoptoza în celulele U937 printr – o cale dependentă mitocondriale. Br. J. Pharmacol. 2005; 145 (2): 145-155. [http://dx.doi.org/10.1038/sj.bjp.0706137]. [PMID: 15753952]. Articol gratuit PMC ] PubMed ]
54. Bhattacharya K., Bag AK, Tripathi R., Samanta SK, Pal BC, Shaha C., Mandal C. Mahanine, un roman inhibitor mitocondriale complex-III induce G0 / oprirea G1 prin redox răspunsului deteriorarea ADN mediat de alterare și regreseaza glioblastom multiform. A.m. J. Cancer Res. 2014; 4 (6): 629-647. [PMID: 25520856].Articol gratuit PMC ] PubMed ]
55. Chen YR., J. Han, Kori R., Kong AN., Tan TH. -feniletil izotiocianat induce semnalizarea apoptotice prinsuprimarea activității fosfatazei împotriva cjun N-terminal kinaza. J. Biol. Chem. 2002; 277 (42): 39334-39342. [http://dx.doi.org/10.1074/ jbc.M202070200]. [PMID: 12171915]. PubMed ]
56. Moon YJ, Brazeau DA, Morris ME dietetice fenetilic izotiocianat modifica expresia genelor in celulele cancerului de san uman. Evid. Complement Bazat. Alternat. Med. 2010 [PMID: 20953429].Articol gratuit PMC ] PubMed ]
57. Wang Y., Wei S., Wang J., Fang Q., Chai Q. FenetH izotiocianat inhibă creșterea celulelor umane cronice leucemie mieloidă K562 prin generarea și caspazelor specii reactive de oxigen. Mol. Med. Rep. 2014; 10 (1): 543-549. [PMID: 24788892]. PubMed ]
58. Cheung KL, AN Kong. Tinte moleculare ale dietetice izotiocianat fenetil și sulforafan pentru chemoprevention de cancer. AAPS J. 2010; 12 (1): 87-97. [http://dx.doi.org/10.1208/s12248-009-9162-8]. [PMID: 20013083]. Articol gratuit PMC ] PubMed ]
59. Trachootham D., Zhou Y., Zhang H., Demizu Y., Chen Z., Pelicano H., Chiao PJ, Achanta G., Arlinghaus RB, Liu J., Huang P. uciderea selectivă a celulelor transformate prin oncogenically un mecanism de ROS mediat de izotiocianat β-feniletil. Cancer Cell. 2006; 10 (3): 241-252. [http://dx.doi.org/10.1016/ j.ccr.2006.08.009]. [PMID: 16959615]. PubMed ]
60. Xu K., Thornalley PJ Implicarea metabolismului glutationului în citotoxicitatea izotiocianatului fenetil și conjugatul său cisteină la celulele umane leucemie in vitro. Biochem. Pharmacol. 2001; 61 (2): 165-177. [http://dx.doi.org/10.1016/S0006-2952(00) 00526-8]. [PMID: 11163331]. PubMed ]
61. Chou YC., Chang MEU., Wang MJ., Harnod T., Hung CH., Lee HT., Shen CC., Chung JG. PEITC induce apoptoza creierului uman Glioblastoma GBM8401 Celulele prin căile -signaling extrinsic- și intrinseci. Neurochem. Int. 2015; 81 : 32-40. [http://dx.doi.org/10.1016/j.neuint.2015.01.001]. [PMID: 25582659].PubMed ]
62. Lee DH., Kim DW., Lee HC., Lee JH., Lee TH. Fenetil izotiocianat sensibilizează celulele gliom la apoptoza indusă de TRAIL. Biochem. Biophys. Res. Commun. 2014; 446 (4): 815-821. [http://dx.doi.org/10.1016/j.bbrc.2014.01.112]. [PMID: 24491546]. PubMed ]
63. Su JC., Lin K., Wang Y., Sui SH., Gao ZY., Wang ZG. In vitro , studiile de phenethyl izotiocianat împotriva creșterii celulelor gliom umane LN229. Int. J. Clin. Exp. Pathol. 2015; 8 (4): 4,269-4,276. [PMID: 26097624].Articol gratuit PMC ] PubMed ]
64. Chen G., Chen Z., Hu Y., Huang P. Inhibarea respirației mitocondriale și epuizarea rapidă a glutation mitocondriale de izotiocianat-β fenetil: mecanisme pentru activitatea anti-leucemie. Antioxid. Redox Signal.2011; 15 (12): 2911-2921. [http: //dx.doi.
org / 10.1089 / ars.2011.4170]. [PMID: 21827296].
 Articol gratuit PMC ] PubMed ]
65. Pecere T., Gazzola MV, Mucignat C., Parolin C., Vecchia FD, Cavaggioni A., Basso G., Diaspro A., Salvato B., Carli M., Palù G. Aloe-emodina este un tip nou agent anticancer cu activitate selectivă împotriva tumorilor neuroectodermale. Cancer Res. 2000; 60 (11): 2800-2804. [PMID: 10850417]. PubMed ]
66. Guo JM, Xiao BX, Liu Q., Zhang S., Liu DH, efect Gong ZH Anticancer de aloe-emodina asupra celulelor cancerului de col uterin implica stop G2 / M și inducerea diferențierii. Acta Pharmacol. Păcat. 2007; 28 (12): 1991-1995. [http://dx.doi.org/10.1111/j.1745-7254. 2007.00707.x]. [PMID: 18031614]. PubMed ]
67. Ismail S., Haris K., Abdul Ghani AR, Abdullah JM, Johan MF, Mohamed Yusoff AA îmbunătățită inducția opririi ciclului celular si apoptoza prin intermediul mitocondrial membranei potential perturbării in U87 umane celulele gliom malign prin emodina aloe. J. Asian Nat. Prod. Res. 2013; 15 (9): 1003-1012. [http://dx.doi.org/
10.1080 / 10286020.2013.818982]. [PMID: 23869465].
 PubMed ]
68. Haris K., Ismail S., Idris Z., Abdullah JM, Yusoff profilul AA Exprimarea genelor modulate de Aloe emodina in celulele U87 glioblastom umane. Pac din Asia. J. Cancer Prev. 2014; 15 (11): 4499-4505. [http://dx.doi.org/10.7314/APJCP.2014.15.11.4499]. [PMID: 24969876]. PubMed ]
69. Lu B., Yin L., Xu L., Peng J. Aplicarea tehnicilor proteomica și bioinformatica pentru studierea efectului hepatoprotector dioscinei împotriva CCl 4 induse de leziuni hepatice la soareci. Med planta. 2011; 77 (5): 407-415. [http://dx.doi.org/10.1055/s-0030-1250461]. [PMID: 20979020]. PubMed ]
70. Wei Y., Xu Y., Han X., Qi Y., Xu L., Xu Y., Yin L., Sun H., Liu K., efecte Peng J. anti-cancer dioscinei pe trei tipuri de linii celulare de cancer pulmonar umane prin inducerea de daune ADN – ului și activarea căii semnalului mitocondrial. Food Chem. Toxicol. 2013; 59 : 118-128. [http://dx.doi.org/10.1016/j.fct.2013.05.054]. [PMID: 23764357]. PubMed ]
71. Wu S., Xu H., Peng J., Wang C., Jin Y., Liu K., Sun H., Qin J. Potent efect anti-inflamator dioscinei mediate prin suprimarea VCAM induse de TNF-α- -1, ICAM-1și expresie EL prin calea NF-kB. Biochimie. 2015; 110 : 62-72. [http://dx.doi.org/10.1016/j.biochi.2014.12.022]. [PMID: 25577996]. PubMed ]
72. Lv L., Zheng L., Dong D., Xu L., Yin L., Xu Y., Qi Y., Han X., Peng J. dioscină, un saponină steroid natural, induce apoptoza si daune ADN – ului prin intermediul specii reactive de oxigen: un nou medicament potential pentru tratamentul glioblastomul multiform. Food Chem. Toxicol. 2013; 59 : 657-669. [http://dx.doi.org/10.1016/j.fct.2013. 07.012]. [PMID: 23871826]. PubMed ]
73. Cavalieri E., Mariotto S., Fabrizi C., de Prati AC, Gottardo R., Leone S., Berra LV, Lauro GM, Ciampa AR, Suzuki H. α-bisabolol, un compus natural nontoxic, induce puternic apoptoza în celulele gliom. Biochem.Biophys. Res. Commun. 2004; 315 (3): 589-594. [http://dx.doi.org/10.1016/j.bbrc.2004.01.088]. [PMID: 14975741]. PubMed ]
74. Chiou SM., Chiu CH., Yang ST., Yang JS., Huang HY., Kuo CL., Chen PY., Chung JG. Danthron declanșează ROS și mediată de mitocondriile moarte apoptotice în celulele gliom C6 de șobolan prin cascadele caspazei, factor de inducere a apoptozei și endonucleazică G semnalizare multiple. Neurochem. Res. 2012; 37 (8): 1790-1800. [http://dx.doi.org/10.1007/s11064-012-0792-3]. [PMID: 22592642]. PubMed ]
75. Kwak MS., Yu SJ, Yoon JH., Lee SH., Lee SM., Lee JH., Kim YJ, Lee HS., Kim CY Synergistic eficacitatea anti-tumoare de doxorubicină și flavopiridolului într – un in vivo model de carcinom hepatocelular . J. Cancer Res. Clin. Oncol. 2015; 141 (11): 2037-2045. [http://dx.doi.org/10.1007/s00432-015-1990-6]. [PMID: 25989942]. PubMed ]
76. Newcomb EW, Tamasdan C., Entzminger Y., Alonso J., Friedlander D., D. Crisan, Miller DC, Zagzag D. Flavopiridolul induce apoptoza mediată de mitocondrial în celulele gliom GL261 murine prin eliberarea citocromului c și inducerea apoptozei factor. Ciclul celular. 2003; 2 (3): 243-250. [http://dx.doi.org/10.4161/cc. 2.3.357]. [PMID: 12734434]. PubMed ]
77. Newcomb EW, Tamasdan C., Entzminger Y., Arena E., Schnee T., Kim M., D. Crișan, Lukianov Y., Miller DC, Zagzag D. Flavopiridolul inhibă creșterea gliomelor GL261 in vivo : implicații pentru terapia cu gliom malign. Ciclul celular. 2004; 3 (2): 230-234. [http://dx.doi.org/10.4161/cc.3.2.667]. [PMID: 14712094].PubMed ]
78. Liu M., Hansen PE, Wang G., Qiu L., Dong J., Yin H., Qian Z., Yang M., profilul Miao J. Farmacologice xanthohumol, un flavonoid prenylated din hamei (Humulus lupulus) . Molecule. 2015; 20 (1): 754-779. [http://dx.doi.org/10.3390/molecules20010754]. [PMID: 25574819]. PubMed ]
79. Festa M., Capasso A., D’Acunto CW, Masullo M., Rossi AG, Pizza C., Piacente S. xanthohumol induce apoptoza in celulele de glioblastom maligne umane prin creșterea specii reactive de oxigen si activarea cai MAPK. J. Nat. Prod. 2011; 74 (12): 2505-2513. [http://dx.doi.org/10.1021/np200390x]. [PMID: 22111577].PubMed ]
80. Wiench B., Eichhorn T., Paulsen M., Efferth T. shikonin direct obiective mitocondriile si provoaca disfunctie mitocondriala in celulele canceroase. Evid. Complement Bazat. Alternat. Med. 2012 726025. PMC articol gratuit ] PubMed ]
81. Chen CH., Lin ML., Ong PL., Yang JT. Romanul mecanism apoptotic multiplu de shikonin în celulele gliom umane. Ann. Surg. Oncol. 2012; 19 (9): 3097-3106. [http://dx.doi.org/10.1245/s10434-012-2324-4]. [PMID: 22446899]. PubMed ]
82. Yang JT., Li ZL., Wu JY., Lu FJ., Chen CH. Un mecanism de stres oxidativ al shikonin in celulele gliom umane. PLoS Unul. 2014; 9 (4): e94180. [http://dx.doi.org/10.1371/journal.pone. 0094180]. [PMID: 24714453]. Articol gratuit PMC ] PubMed ]
83. Venugopal R., Liu RH Fitochimicalele în dietele pentru prevenirea cancerului de san: Importanta resveratrol si acid ursolic. Food Science and Wellness uman. 2012; 1 (1): 1-13. [http://dx.doi.org/
10.1016 / j.fshw.2012.12.001].
84. Jiang H., Zhang L., Kuo J., Kuo K., Gautam SC, Groc L., Rodriguez AI, Koubi D., Hunter TJ, Corcoran GB, Seidman MD, Levine RA Resveratrol induse de moarte apoptotică la om celulele de gliom U251. Mol. Cancer Ther. 2005; 4 (4): 554-561. [http: //
dx.doi.org/10.1158/1535-7163.MCT-04-0056]. [PMID: 15827328].
 PubMed ]
85. Batra P., potențial Sharma AK anti-cancer de flavonoide: tendințe recente și perspective de viitor. 3 Biotech. 2013; 3 (6): 439-459.
86. Kim H., Moon JY, Ahn KS, Cho SK Quercetin induce apoptoza mediată mitocondrială și autophagy protector în celulele de glioblastom U373MG umane. Oxid. Med. Cell. Longev. 2013; 2013 596496.PMC articol gratuit ] PubMed ]
87. Zamin LL, Filippi-Chiela EC, Vargas J., Demartini DR, Meurer L., Souza AP, Bonorino C., Salbego C., Lenz G. Quercetin promovează creșterea gliom într – un model de șobolan. Food Chem. Toxicol. 2014; 63 : 205-211. [http://dx.doi.org/10.1016/j.fct.2013. 11.002]. [PMID: 24252772]. PubMed ]
88. Li S., Chou G., Hseu Y., Yang H., Kwan H., Yu Z. Izolarea componentelor anticanceroase din flos genkwa (Daphne genkwa Sieb.et Zucc.) Prin proceduri ghidate de bioanaliză. Chem. Cent. J. 2013; 7 (1): 159. [http://dx.doi.org/10.1186/1752-153X-7-159]. [PMID: 24059652]. Articol gratuit PMC ] PubMed ]
89. Wang Y., Xu YS, Yin LH, Xu LN, Peng JY, Zhou H., Kang W. sinergică efect anti-gliom de Hydroxygenkwanin și Apigenin in vitro. Chem. Biol. Interacționa. 2013; 206 (2): 346-355. [http://dx.doi.org/10.1016/j.cbi.2013.10.009]. [PMID: 24144774]. PubMed ]
90. Rasul A., Khan M., Ali M., Li J., Li X. Direcționarea căilor apoptozei in cancerul cu alantolactone si isoalantolactone. Revista științifică. 2013; 2013 248532. [ PMC articol gratuit ] PubMed ]
91. Khan M., Yi F., Rasul A., Li T., Wang N., Gao H., Gao R., Ma T. Alantolactone induce apoptoza în celulele de glioblastom prin epuizarea GSH, generarea de ROS și disfuncția mitocondrială. IUBMB Life. 2012; 64 (9): 783-794. [http://dx.doi.org/10.1002/iub. 1068]. [PMID: 22837216]. PubMed ]
92. Kim SH., Choi KC. Efectul anti-cancer si mecanismul care stau la baza (e) de Kampferolul, un fitoestrogen, privind reglarea apoptozei în modele de celule canceroase diverse. Toxicol. Res. 2013; 29 (4): 229-234. [http://dx.doi.org/10.5487/TR.2013.29.4.229]. [PMID: 24578792]. Articol gratuit PMC ] PubMed ]
93. Sharma V., Joseph C., Ghosh S., Agarwal A., Mishra MK, Sen E. Kaempferolul induce apoptoza in celulele de glioblastom prin stres oxidativ. Mol. Cancer Ther. 2007; 6 (9): 2544-2553. [http: //
dx.doi.org/10.1158/1535-7163.MCT-06-0788]. [PMID: 17876051].
 PubMed ]
94. Liang WZ., Chou CT., Chang HT., Cheng JS., Kuo DH., Ko KC., Chiang NN., Wu RF., Shieh P., Jan CR. Mecanismul intracelular indus de honokiol Ca (2+) creste si apoptoza in celulele de glioblastom umane.Chem. Biol. Interacționa. 2014; 221 : 13-23. [http://dx.doi.org/10.1016/j.cbi.2014.07.012]. [PMID: 25106108].PubMed ]
95. Jeong JJ, Lee JH, Chang KC, Kim HJ Honokiol exercită un efect anticancerigen in celulele de glioblastom uman T98G prin inducerea apoptozei și reglarea moleculelor de adeziune. Int. J. Oncol. 2012; 41 (4): 1358-1364. [PMID: 22895699]. PubMed ]
96. Sohma I., Fujiwara Y., Sugita Y., Yoshioka A., M. Shirakawa, Moon JH., Takiguchi S., Miyata H., Yamasaki M., Mori M., Doki Y. Parthenolidele, un NF- inhibitor al NFkB, suprima creșterea tumorii și îmbunătățește răspunsul la chimioterapie în cancerul gastric. Cancer Genomics proteomica. 2011; 8 (1): 39-47. [PMID: 21289336]. PubMed ]
97. Nakabayashi H., Shimizu K. Implicarea Akt / NF-kB cale in efectele antitumorale ale parthenolidelor asupra celulelor de glioblastom in vitro și in vivo. Cancer BMC. 2012; 12 (1): 453. [http://dx.doi.org/
10.1186 / 1471-2407-12-453]. [PMID: 23039130].
 Articol gratuit PMC ] PubMed ]
98. Zanotto-Filho A., Braganhol E., Schroder R., de Souza LH, Dalmolin RJ, Pasquali MA, Gelain DP, Battastini AM, inhibitori Moreira JC induce moartea celulelor kB în glioblastoame. Biochem. Pharmacol. 2011; 81 (3): 412-424. [http://dx.doi.org/
10.1016 / j.bcp.2010.10.014]. [PMID: 21040711].
 PubMed ]
99. Stangl V., Lorenz M., Ludwig A., Grimbo N., Guether C., Sanad W., Ziemer S., Martus P., Baumann G., Stangl K. floretin flavonoid suprimă exprimarea adeziunii endoteliale stimulata molecule si reduce activarea plachetelor umane. J. Nutr. 2005; 135 (2): 172-178. [PMID: 15671209]. PubMed ]
100. Barreca D., Bellocco E., Laganà G., Ginestra G., Bisignano C. biochimice și activitatea antimicrobiană a floretin și a derivaților săi glycosilated prezenți în mere și kumquat. Food Chem. 2014; 160 : 292-297. [http://dx.doi.org/10.1016/j.foodchem. 2014.03.118]. [PMID: 24799241]. PubMed ]
101. Hoa NT, Zhang JG, Delgado CL, Myers MP, Callahan LL, Vandeusen G., Schiltz PM, Wepsic HT, monocite JADUŠ MR umane ucid M exprimând-CSF-celulele gliom prin activarea canalului BK. Lab. Investi. 2007; 87(2): 115-129. [http://dx.doi.org/10.1038/labinvest.3700506]. [PMID: 17318194]. PubMed ]
102. Hoa N., Myers MP, Douglass TG, Zhang JG, Delgado C., Driggers L., Callahan LL, VanDeusen G., Pham JT, Bhakta N., Ge L., mecanismele JADUŠ MR moleculare de inducție paraptosis: implicații pentru un vaccin tumoral modificat non-genetic. PLoS Unul. 2009; 4 (2): e4631-e4631. [http://dx.doi.org/
10.1371 / journal.pone.0004631]. [PMID: 19247476].
 Articol gratuit PMC ] PubMed ]
103. Voss V., SENFT C., Lang V., Ronellenfitsch MW, Steinbach JP, Seifert V., Kögel D. pan-Bcl-2 inhibitor (-) – Gossypolul declanșează moartea celulelor autofagie in gliom malign. Mol. Cancer Res. 2010; 8 (7): 1002-1016. [http://dx.doi.org/10.1158/1541-7786.MCR-09-0562]. [PMID: 20587533]. PubMed ]
104. Jarząbek MA, Amberger-Murphy V., Callanan JJ, Gao C., Zagozdzon AM, Shiels L., Wang J., Ligon KL, Rich BE, Dicker P., Gallagher WM, Prehn JH, Byrne AT interogatoriul gossypolului terapia in glioblastom implementare linie de celule si modele tumorale pacient derivate. Br. J. Cancer. 2014; 111 (12): 2275-2286. [http://dx.doi.org/10.1038/bjc.2014.529]. [PMID: 25375271]. Articol gratuit PMC ] PubMed ]
105. Bushunow P., Reidenberg MM, Wasenko J., Winfield J. Lorenzo B., Lemke S., Himpler B., Corona R., tratamentul Coyle T. Gosipol de glioamele maligne recurente pentru adulți. J. Neurooncol. 1999; 43 (1): 79-86. [http://dx.doi.org/10.1023/A: 1006267902186]. [PMID: 10448875]. PubMed ]
106. Sun Y., Xun K., Wang Y., Chen X. O analiză sistematică a proprietăților anticancerigene ale berberina, un produs natural din plante din China. Medicamente anticancer. 2009; 20 (9): 757-769. [http://dx.doi.org/
10.1097 / CAD.0b013e328330d95b]. [PMID: 19704371].
 PubMed ]
107. Eom KS, Kim HJ., Deci HS., Apoptoza Park R., Kim TY Berberina induse în celulele de glioblastom T98G umane este mediată de stres reticulului endoplasmatic care însoțesc specii reactive de oxigen și disfuncția mitocondrială. Biol. Pharm. Taur. 2010; 33 (10): 1644-1649. [http://dx.doi.org/10.1248/bpb.33.1644]. [PMID: 20930370]. PubMed ]
108. Liu Q., Xu X., Zhao M., Wei Z., Li X., Zhang X., Liu Z., Y. Gong, Shao C. Berberina induce senescența celulelor glioblastom umane prin inhibe EGFR-MEK cale de semnalizare -ERK. Mol. Cancer Ther. 2015; 14(2): 355-363. [http://dx.doi.org/10.1158/1535-7163.MCT-14-0634]. [PMID: 25504754]. PubMed ]
109. Eom KS., Hong JM., Youn MJ., Deci HS., Parcul R., Kim JM., Kim TY. Berberina induce oprirea G1 si apoptoza in celulele de glioblastom T98G umane prin mitocondrial / caspazele cale. Biol. Pharm. Taur.2008; 31 (4): 558-562. [http://dx.doi.org/
10.1248 / bpb.31.558]. [PMID: 18379040].
 PubMed ]
110. Fu S., Xie Y., Tuo J., Wang Y., Zhu W., Wu S., Yan G., Hu H. Descoperirea derivaților berberina-orientare mitocondriei ca inhibitori de proliferare, invazia și migrația împotriva C6 de șobolan și celule U87 gliom uman. MedChemComm. 2015; 6 (1): 164-173. [http://dx.doi.org/10.1039/C4MD00264D]. [PMID: 26811742].
111. Procházková D., Boušová I., Wilhelmová N. antioxidante și proprietăți prooxidanți de flavonoide. Fitoterapia. 2011; 82 (4): 513-523. [http://dx.doi.org/10.1016/j.fitote.2011.01.018]. [PMID: 21277359].PubMed ]
112. Kang J., Chen J., Shi Y., Jia J., Zhang Y. curcumin indusă Hypoacetylation histone: rolul de specii reactive de oxigen. Biochem. Pharmacol. 2005; 69 (8): 1205-1213. [http://dx.doi.org/
10.1016 / j.bcp.2005.01.014]. [PMID: 15794941].
 PubMed ]
113. de la Lastra CA, Villegas I. Resveratrolul ca antioxidant și pro-oxidant agent: mecanisme și implicații clinice. Biochem. Soc. Trans. 2007; 35 (Pt 5): 1156-1160. [http://dx.doi.org/10.1042/ BST0351156]. [PMID: 17956300]. PubMed ]
114. López-Lázaro M. Anticancer și proprietăți carcinogene ale curcumin: considerații pentru dezvoltarea sa clinice ca chemopreventive cancer si agent chimioterapeutic. Mol. Nutr. Alimentare Res. 2008; 52 (S1) Suppl. 1: S103-S127. [PMID: 18496811]. PubMed ]
115. DeGeorge JJ, Ahn CH., Andrews PA, Brower ME, Giorgio DW, Goheer MA, Lee-Ham DY, McGuinn WD, Schmidt W., Sun CJ, Tripathi SC considerente de reglementare pentru dezvoltarea preclinice de medicamente impotriva cancerului. Cancer Chemother. Pharmacol. 1998; 41 (3): 173-185. [http://dx.doi.org/10.1007/ s002800050726]. [PMID: 9443633]. PubMed ]
116. Gescher A., Steward WP, Brown , K. resveratrol în managementul cancerului uman: cât de puternică este dovada clinică? Ann. NY Acad. Sci. 2013; 1290 (1): 12-20. [http://dx.doi.org/10. 1111 / nyas.12205]. [PMID: 23855461]. PubMed ]
117. provocări biodisponibilității orale de produse naturale utilizate în chemoprevention cancerului. 化学进2013; 25 (9)
118. Anand P., Kunnumakkara AB, Newman RA, Aggarwal BB Biodisponiobilitatea curcumin: probleme și promisiuni. Mol. Pharm. 2007; 4 (6): 807-818. [http://dx.doi.org/10.1021/mp700113r]. [PMID: 17999464].PubMed ]
119. Prasad S., Tyagi AK, Aggarwal BB 2014.
120. Pardridge WM Transportul de molecule mici prin bariera hematoencefalică: biologie și metodologie.Adv. Drug Deliv. Rev. 1995; 15 (1): 5-36. [http://dx.doi.org/10.1016/0169-409X(95) 00003-P].
121. Gabathuler R. Abordări pentru a transporta droguri terapeutice prin bariera hematoencefalică pentru a trata boli ale creierului. Neurobiol. Dis. 2010; 37 (1): 48-57. [http://dx.doi.org/10.1016/j.nbd.2009.07.028]. [PMID: 19664710]. PubMed ]
122. Wei X., Chen X., Ying M., Lu W. Brain strategii de livrare de droguri orientate-tumorale. Acta Pharm.Păcat. B. 2014; 4 (3): 193-201. [http://dx.doi.org/10.1016/j.apsb.2014.03.001]. [PMID: 26579383].Articol gratuit PMC ] PubMed ]
123. Chaichana KL, Pinheiro L., Brem H. Livrare terapeutica locale la nivelul creierului: de lucru spre avansarea de tratament pentru glioamele maligne. 2015; 6 (3): 353-369. Articol gratuit PMC ] PubMed ]
124. Oshiro S., Tsugu H., Komatsu F., Ohnishi H., Ueno Y., Sakamoto S., Fukushima T., Soma G. Evaluarea administrării intratumorală a factorului de necroză tumorală alfa la pacienții cu gliom malign. Anticancer Res. 2006; 26 (6A): 4027 la 4032. [PMID: 17195453]. PubMed ]
125. Sawyer AJ, Piepmeier JM, Saltzman LB Noi metode pentru livrarea directa de chimioterapie pentru tratarea tumorilor cerebrale. Yale J. Biol. Med. 2006; 79 (3-4): 141-152. [PMID: 17940624].Articol gratuit PMC ] PubMed ]
126. RS Doran A., Obach, Smith BJ, Osea NA, Becker S., Callegari E., Chen C., Chen X., Choo E., Cianfrogna J., Cox LM, Gibbs JP, Gibbs MA, Hatch H ., Hop CE, Kasman IN, Laperle J., Liu J., Liu X., Logman M., Maclin D., Nedza FM, Nelson F., Olson E., Rahematpura S., Raunig D., Rogers S. , Schmidt K., Spracklin DK, Szewc M., Troutman M., Tseng E., Tu M., Van Deusen JW, Venkatakrishnan K., Walens G., Wang EQ, Wong D., Yasgar AS, Zhang C. impactul asupra dispunerii de medicamente specifice pentru indicii ale sistemului nervos central-glicoproteina P: evaluarea utilizând modelul de șoarece cu knock – out MDR1A / 1B. Drug Metab. Dispos. 2005; 33 (1): 165-174. [http://dx.doi.org/10.1124/dmd.104.001230]. [PMID: 15502009]. PubMed ]
127. Kharasch ED, Hoffer C., Whittington D. Efectul chinidinei, utilizat ca probă pentru implicarea glicoproteina P, pe absorbția intestinală și farmacodinamica metadonă. Br. J. Clin. Pharmacol. 2004; 57 (5): 600-610. [http://dx.doi.org/
10.1111 / j.1365-2125.2003.02053.x]. [PMID: 15089813].
 Articol gratuit PMC ] PubMed ]
128. Sadeque AJ, Wandel C., El H., Shah S., Wood AJ Creșterea de livrare de droguri la creier prin inhibarea P-glicoproteinei. Clin. Pharmacol. Ther. 2000; 68 (3): 231-237. [http://dx.doi.org/10. 1067 / mcp.2000.109156]. [PMID: 11014404]. PubMed ]
129. Kitagawa S. Efectele inhibitoare ale polifenolilor asupra transportului mediat de p-glicoproteină. Biol.Pharm. Taur. 2006; 29 (1): 1-6. [http: // dx. doi.org/10.1248/bpb.29.1]. [PMID: 16394499]. PubMed ]
130. Horobin RW, Trapp S., Weissig V. Mitochondriotropics: o trecere în revistă a modului lor de acțiune, și cererile lor de droguri și ADN – ul de livrare la mitocondriile mamifere. J. control. Eliberare. 2007; 121 (3): 125-136. [http://dx.doi.org/10.1016/j.jconrel.2007. 05.040]. [PMID: 17658192]. PubMed ]
131. Neuzil J., Dong LF., Rohlena J., Truksa J., Ralph SJ Clasificarea mitocans, medicamente anti-cancer care acționează asupra mitocondriilor. Mitocondrie. 2013; 13 (3): 199-208. [http://dx.doi.org/10.1016/ j.mito.2012.07.112]. [PMID: 22846431]. PubMed ]
132. Neuzil J., Tomasetti M., Zhao Y., Dong LF., Birringer M., Wang XF., Low P., Wu K., Salvatore BA, Ralph SJ Vitamina E analogi, un nou grup de „mitocans, “ca agenți anticancer: importanța de a fi tăcut-redox. Mol.Pharmacol. 2007; 71 (5): 1185-1199. [http://dx.doi.org/10.1124/mol.106.030122]. [PMID: 17220355].PubMed ]
133. Sassi N., Mattarei A., Azzolini M., Bernardi P., Szabo I., Paradisi C., Zoratti M., derivați de resveratrol Biasutto L. Mitocondriile orientate citotoxice acționează ca pro-oxidanți. Curr. Pharm. Des. 2014; 20 (2): 172-179. [http://dx.doi.org/10.2174/ 13816128113199990034]. [PMID: 23701548]. PubMed ]
134. Mattarei A., Biasutto L., Marotta E., De Marchi U., Sassi N., Garbisa S., Zoratti M., Paradisi C. Un derivat mitochondriotropic quercetinei: o strategie pentru a crește eficacitatea polifenoli. ChemBioChem. 2008; 9(16): 2633-2642. [http: // dx. doi.org/10.1002/cbic.200800162]. [PMID: 18837061]. PubMed ]

Articolele de la curent Neuropharmacology sunt furnizate aici prin amabilitatea Bentham Science Publishers
Disfuncția mitocondrială în glioame: Potențialul farmacoterapeutic al compușilor naturali.
Logo-ul currneuro

Link to Publisher's site
Curr Neuropharmacol. 2016 august; 14 (6): 567-583.
Publicat online 2016 august. doi: 10.2174 / 1570159X14666160121115641
PMCID: PMC4981742
Disfuncția mitocondrială în glioame: Potențialul farmacoterapeutic al compușilor naturali

Caz (relativ) critic

Lisenchi Geanina are 31 de ani si este mama a unei fetite de 7 ani, iar din octombrie 2013 pana in prezent a suferit 2 operatii pe creier

.Geanina Lisenchi

Tanara a fost diagonsticata cu tumora cerebrala ependimom analpazic grupa 3.

A fost operata in Iasi prima data in octombrie 2013, intracranian, apoi acum 5 luni, pe 13 martie 2015 in afara cutiei craniene. Tumora s-a dezvoltat intre piele si os plecand, plecand la o prima vedere din gaura de trepan.

Dupa prima operatie a facut si radioterapie 28 sedinte si a ramas ‘surprinzator’ si cu o hemipareza la piciorul stang

A doua operatie a facut-o tot la Iasi, caci i s-a spus ca este bine localizata, dar trebuie scoasa, deoarece impingea foarte mult in piele si era periculos.

Acum, la 5 luni de la a doua operatie, lucrurile stau foarte rau pentru tanara mamica.

tot ‘surprinzator’, dupa ‘tratamentul’ radio’terapeutic, acum i s-a depistat o noua tumoare ce creste ‘vazand cu ochii'(tumoare pe care medicii nu au putut sa o depisteze in timp util desi au efectuat multipel RMNuri)

Tumora epicraniana s-a format din nou si exista riscul sa ii pocneasca, la propriu, pielea de pe cap. Tumora se dezvolta foarte repede, iar Geanina are nevoie de mare ajutor(ca de altfel  cei mai multi ce citesc acest blog). Operatia care ii poate salva viata pe moment costa 60.000 de euro si va fi efectuata in Germania (dupa cunsotiintele mele la INI Hanovra).

Pentru persoanele care vor sa doneze(cat consideraa fiecare de cuviinta, mic cu mic se face mare si aici timpul chiar preseaza), datele sunt urmatoarele:

Lisenchi Ionela Geanina.

Banca Transilvania Iasi. Cod swift: BTRLRO22 , Cod BIC: BTRL.
Cont LEI: RO88BTRL02401201734297XX
ContEURO: RO86BTRLEURCRT0073429701
Cont PayPal: gyany_yany@yahoo.com

Sa speram ca banii vor fi folositi pentru operati si tratamente ce o pot ajuta si ca Geanina nu va repeta greseala cu radio ‘terapia’  .

De asemenea, sa ne rugam la Dumnezeu ca Geanina sa se vindece sa isi poataa creste fata de 7 ani

de aceea, rog pe toata lumea, si in special pe cei ce chiar NU pot dona, sa spuna o rugaciune din suflet pentru Geanina si fetita ei.

DOAMNE, te rugam  IARTA si AJUTA!

p.s.

1.Din experinta si cazuri concrete va spun ca Dumnezeu o poate vindeca si fara operatie.Trebuie doar credinta.

2. este un caz pe care il cunosc si necesita interventie chirurgicala urgent

Mai multe detalii despre acest caz gasiti AICI si AICI.

http://stirileprotv.ro/stiri/social/la-31-de-ani-o-tanara-din-romania-se-lupta-cu-o-tumoare-cerebrala-tot-ce-isi-doreste-este-sa-isi-creasca-fetita-de-7-ani.html

Caz Genina Lisenchi
Caz Genina Lisenchi
Caz Genina Lisenchi

Tipuri de cancer de creier

Baza cea mai comună pentru clasificarea tumorilo cerebrale se bazează pe histopatologice a tumorii.Aceasta este, în esență, natura țesuturilor din care cancerul a provenit.

Organizația Mondială a Sănătății în 1993 prevăzuse o clasificare uniformă de tumorilor cerebrale . Sistemul de clasificare se bazează pe principiul confarm caruia tumoarea este determinată de celule de origine și uneori de locație.

300px-TAC_Brain_tumor_glioblastoma-Transverse_plane

Clasificarea tumorilor cerebrale

Gradarea unei singure tumori poate varia cu sisteme diferite de clasificare.

Conform Organizatiei Mondiale a Sanatatii, sistemul de clasificare Sf Anne / Mayo este cel mai bine corelat cu previzibilitatea de supraviețuire a unei tumori cerebrale, comparativ cu sistemul utilizat mai devreme de clasificare Kernohan.

Sistemul de clasificare Kernohan poate fi folosit pe tumori invazive ale tumorilor astrocitice. Este similar cu sistemul de clasificare OMS.

Clasificarile pot fi prezentate ca:

  1. Gradul I – Acesta este cel mai mic grad. Acest lucru înseamnă că tumora creste lent. Celulelor la microspope apar aproape normală.
  2. Gradul II – tumora crește încet, dar se poate răspândi sau recidiva dupa tratament. Acestea se pot transforma în tumori de grad superior.
  3. Clasa a III – Aceste tumori sunt cu creștere rapidă care se pot generaliza. Celulele nu seamănă cu celulele normale.
  4. Clasa a IV – Acestea sunt, de asemenea, o creștere rapidă și răspândirea tumorilor. Tumorile pot fi înconjurate de un cerc de tesuturi necrotice moarte. Acestea sunt dificil de tratat.

Exemple de clasificare

Tumorile cerebrale sunt mase de celule maligne care pot creste in creier sau pe invelisurile acestuia.

Sunt in general impartite in doua categorii: tumori primare ale creierului, care se dezvolta chiar din celulele creierului si metastaze cerebrale care ajung sa se devolte in creier avand ca punct de plecare un alt cancer din organism.

Tumorile primare ale creierului se clasifica dupa tipul de celula maligna care le-a generat in:

  • tumori gliale,
  • tumori neuronale provenite din celulele nervoase,
  • tumori meningeale, provenite din celulele invelisurilor care acopera creierul si
  • schwanoame, provenite din celulele tecilor nervoase.

Tumorile primare ale creierului, in special astrocitoamele se gradeaza dupa un sistem propus de Organizatia Mondiala a Sanatatii, de la gradul I la gradul IV.

Iradierea(de orice tip ionizat (Raze X, radiografii dentare, alte radiografii, radioterapie, nucleare)   si chair si de la telefoane mobile) efectuata in cursul vietii pentru alte boli creste riscul aparitiei glioamelor si meningioamelor.

Metastazele cerebrale sunt in legatura directa cu tumora primara care le-a generat. Cele mai frecvente tumori care dau metastaze in creier sunt: tumorile pulmonare, cancerul de san, cancerul renal, melanomul si cancerul de colon.

Simptomele tumorilor cerebrale
Acestea depind de localizarea leziunii in creier si pot include: cefalee, crize epileptice, paralizii, amorteli, tulburari de vorbire, paralizii de nervi cranieni. Simptomele se accentueaza progresiv.

Tumorile cerebrale pot sa apara la orice varsta.

Copiii sub 2 ani si batranii au un risc particular de a dezvolta tumori cerebrale, care le-ar scurta semnificativ viata.

Tipurile de tumori dezvoltate pe diferite grupe de varsta variaza foarte mult. De exemplu, glioblastomul (o tumora cu malignitatea ridicata) are incidenta cea mai mare la batrani, in timp ce meduloblastomul este mai frecvent la copii. Amandoua tipurile de tumora pot cauza decesul, dar se comporta clinic foarte diferit.

Cele mai frecvente tipuri de tumori cerebrale:

La adulti, cele mai frecvente tumori cerebrale sunt fie gliomul sau meningioamele.

Gliomul provin din celule numite celule gliale. Acestea includ subclasificării de celule numite astrocite (cu tumori nomenclaturate ca astrocitoame), oligodendrocite (numite tumori oligodendrale) și celule ependimale. Astfel, există trei tipuri majore de Gliom:

  1. Astrocitomul 

    Provine din astrocite care sunt celule de sustinere ale sistemului nervos. Gradul de malignitate este stabilit de anatomo-patolog in functie de caracteristicile celulelor. Astrocitoamele de grad mic reprezinta peste 15% din tumorile persoanelor tinere, iar supravietuirea este maxim 10, sanse 50%,  urmand tratament medicinal . Obsevati , va rog,  ca atunci cand se vorbeste de tratament medicinal se vorbeste de supravietuire, NU de vindecare! Exista si alternative si multe cazuri vindecate care au depus  marturie in instanta in acest sens(am scris mai jos).

             Astrocitomul  poate fi clasificat în continuare drept –

* Astrocitoame non invazive OMS gradul I:

* Astrocitom – non-canceroase, OMS gradul II
emisferic
diencefalică
optic
trunchi cerebral
cerebeloasa

*Canceroase (astrocitoame anaplazic) OMS Grad III-

emisferic
diencefalică
optic
trunchiul cerebral
cerebeloasa

* Glioblastoamele multiform (OMS gradul IV), care sunt cele mai agresive forme de tumori primare. Există variante ale acestui formular numit gliosarcom. Este cea mai frecventa si mai agresiva tumora a creierului, reprezentand 25% dintre toate tumorile, avand predilectie pentru varstele cuprinse intre 55-75 de ani. Supravietuirea dupa operatie si tratament oncologic este in medie de 7-9 luni. Exista si alternative si multe cazuri vindecate care au depus marturie in instanta in acest sens(am scris mai jos).

  1. Tumorile oligodendrogliale care poate fi alcătuit dintr-o combinație de astrocite si oligodendrocitele – gliom mixte.

    Tumora provine din oligodendrocite, celule care produc mielina care acopera tecile nervoase. Reprezinta 15-20% din totalul tumorilor cerebrale si apar mai frecvent intre 33 si 55 de ani. Supravietuirea este mai buna decat in cazul astrocitoamelor . Exista si alternative si multe cazuri vindecate care au depus marturie in instanta in acest sens.

    Acestea pot fi clasificate ca Oligodendrogliomul (OMS gradul II)  si Oligodendrogliomul anaplastic (malign)  (OMS gradul III).

Alte tipuri de tumori cerebrale comune la adulti sunt meningiom și schwannom. Acestea afectează oameni cu vârste cuprinse între 40 și 70 de ani si sunt de obicei benigne.Meningioamele afecteaza femeile mai frecvent in timp ce schwannomul poate afecta ambele sexe la fel.

Meningiomul
Apare din celulele arahnoidei care inveleste creierul. Reprezinta circa 25 % din totalul tumorilor cerebrale. Iar incidenta sa creste cu varsta. Marea majoritate sunt benigne si se pot trata cu succes prin rezectie neurochirurgicala, afirma comunitatea medicala.Interesati-va dvs daca este si cazul dvs.  Exista si alternative si multe cazuri vindecate care au depus marturie in instanta in acest sens.

Schwanomul
Apare din celulele Schwan care acopera de obicei nervii periferici, si reprezinta 8-10% din totalul tumorilor. Cea mai comuna localizare este in fosa posterioara pe nervul vestibulo-cohlear sau pe nervul trigemen. Aceste tumori sunt de regula benigne si pot fi vindecate prin operatieInteresati-va dvs despre succes daca este si cazul dvs.  Exista si alternative fara operatie si multe cazuri vindecate care au depus marturie in instanta in acest sens.

 

Alte tipuri:

Ependimomul
Tumora apare din celulele ependimului care captusesete cavitatile lichidiene ale creierului. Tumora apare atat la adult cat si la copil, are o frecventa de aparitie mai mica, iar supravietuirea la 5 ani este in jur de 50-60%. Exista si alternative si multe cazuri vindecate care au depus marturie in instanta in acest sens.

Dermoidul si epidermoidul

Sunt tumori care apar in special in fosa posterioara a creierului si sunt leziuni benigne formate din keratina. Se gasesc de obicei pe linia mediana si pot include elemente din piele, par, glande sudoripare si sebacee. Se trateaza prin rezectie neurochirurgicala.  Interesati-va dvs despre ratele de succes daca este si cazul dvs. Exista si alternative fara operatie si multe cazuri vindecate care au depus marturie in instanta in acest sens.

Meduloblastomul

Este cea mai frecvent intalnita tumora cerebrala la copii. Se dezvolta la nivelul portiunii posterioare si inferioare a creierului, numita cerebel. Tumora se extinde frecvent si in alte zone ale creierului, precum si la maduva spinarii. Mai rar, se poate raspandi si la oase si maduva osoasa.

Tratamentul medicinal standard difera in functia de extinderea bolii, insa, in general, acesta consta dintr-o combinatie a urmatoarelor: tratament chirurgical, radioterapie, si chimioterapie. Tratamentul chirurgical doreste sa  indeparteze o parte cat mai mare din tumoare.

Meduloblastomul este foarte sensibil la radioterapie. Din nefericire, insa, aceasta prezinta efecte secundare pe termen lung, in special la copiii mici. Din acesta considerenta medicii evita pe cat posibil utilizarea radioterapiei la copii, inlocuind-o cu chimioterapia. In unele cazuri, se apeleaza la doze foarte mari de chimioterapice, urmate de un transplant de maduva osoasa, pentru a evita folosirea radioterapiei.Totusi chimioterapia este demonstrata ca fiind  total lipsita de succes, baza stiitifica si deloc adecvata cancerului de creier(click aici si click aici)Mai mult, ca in majoritatea cazurilor de cancer, exista posibilitatea ca tumoarea sa revina dupa tratament.

Există, de asemenea, alte tipuri de tumori cerebrale, dar acestea sunt mai rare. Acestea includ:

  • cranipharingiom
  • ependimom (OMS gradul II)
  • anaplazic ependiom (OMS gradul III) sau Myxopapillary Ependimomul sau subependimom
  • limfoame primare  ale sistemului nervos central
  • pituitare ( adenoame , carcinoame , cranifaringiom) și a tumorilor glandei pineale (pineocitom, pineoblastom sau mixt pineocitom / pineoblastom)
  • tumorile primare cu celule germinale in creier

Există, de asemenea, tumori care pot afecta plexul coroid ca papiloame sau carcinoame, Gangliocitom olfactiv neuroblastom , neuroblastom, retinoblastomul etc

Cancere și tumorile de creier aproape niciodată nu duc la metastaze  Prognosticul lor, cu toate acestea, poate fi încă slab, din cauza capacității lor de a se dezvolta și presurizarea zonele vitale ale creierului de a afecta funcțiile.

Tumorile pot duce la complicatii severe, din cauza simptomelor de compresiune asupra altor domenii vitale și sensibile ale creierului care duce la complicatii si pune viata in pericol sau pot fi  fatale. Unele dintre aceste tumori pot fi, de asemenea, canceroase și agresive. IN aceste cazuri, NU NEGLIJATI OPERATIA!

INAPOI  la cancerul de creier si TRATARE(click aici)