Arhive etichetă | CANCER

Dr. EDUARD ŢOGOREANU – medic chirurg cu competenţe în psiho-oncologie- Cu blândeţe şi optimism, despre CANCER

Dr. EDUARD ŢOGOREANU - Cu blândeţe şi optimism, despre CANCER

„Tratamentele cu extract de vâsc se folosesc de peste 80 de ani în Europa”

O plantă inclusă pe lista medicamentelor compensate

– D-le doctor Ţogoreanu, aveţi o experienţă de 20 de ani în tratamentul natural al cancerelor. Pen­tru un medic chirurg, pare puţin bizar. Ce v-a îm­pins pe acest drum?

– În primul rând, insuficienţa tratamentului chirur­gical. Până acum câţiva ani, se încerca rezolvarea can­cerului pe cale chirurgicală doar prin extirparea tumorii, după care a apărut aşa-numita extirpare cu tendinţă de radicalitate oncologică, ceea ce înseamnă că avansezi şi mai adânc în organism, încercând să scoţi toţi ganglionii limfatici şi ţesuturile adiacente, prin operaţii foarte extinse, care nu întotdeauna dau rezultate bune. Ulterior, s-au impus tratamentele citostatice şi radioterapia. S-a văzut că nici acestea nu sunt chiar atât de eficiente şi s-a trecut la hormono­te­rapie, mai ales pentru cancerul de sân şi cancerul de prostată. În prezent, se combină toate aceste trei tra­tamente cu efecte secundare deosebit de periculoase, iar pacientul intră într-un cerc vicios, din care nu mai poate ieşi. Din păcate, are totodată şi slabe şanse să supravieţuiască! Cunoscând tendinţele naturiste din medicina antropozofică, mi-am zis că ar fi bine să le explorez, să văd ce alte soluţii oferă. Iar oferta era deo­sebit de generoasă, fiindcă această ramură medi­cală pune accent pe recuperarea psihologică şi psiho­afectivă a pacientului, pe kinetoterapie, pe balneo­fizioterapie (masaje, băi etc.) şi, mai ales, pe intro­ducerea în terapie a extractului de vâsc, al cărui efect a fost reconsiderat de întreaga lume medicală.

– Unde v-aţi perfecţionat în această metodă?

– Am avut posibilitatea să urmez un curs în El­veţia, la Clinica Arlesheim de lângă Basel, unde am studiat medicina antropozofică a lui Rudolf Steiner. Mi-am aprofundat apoi experienţa în Austria, la cli­nica în care s-a administrat bolnavilor de cancer medicamentul Isorel, realizat din vâsc, pentru studiile clinice.

– Ce rezultate are extractul de vâsc în trata­mentul cancerului?

– Tratamentele cu extract de vâsc se folosesc de peste 80 de ani în Europa, fiind iniţiate pe baza stu­diilor făcute în Elveţia, la Arlesheim şi Lukas Klinik, unde sunt laboratoarele de cercetare. Au fost realizate câteva produse consacrate: iniţial Iscador, la care s-a adăugat Isoren, apoi Viscum-Abnoba, iar la urmă, Helixor. S-au făcut studii aprofundate de imunologie şi numeroase studii clinice, în marile centre medicale din Germania, Austria şi Elveţia. Extractul de vâsc a fost atât de bine primit, încât a fost inclus pe lista me­dicamentelor compensate din Germania, Austria şi Danemarca. Studiile de laborator şi cercetarea clinică au dovedit că extractul de vâsc are acţiune antican­cerigenă la nivelul membranei celulei canceroase, pe care o împiedică să se dividă; are acţiune de revigo­rare a metabolismului; stimulează regenerarea celula­ră normală şi are efecte asupra celulei nervoase (este singurul care poate să pătrundă prin bariera hemato-encefalică şi să ajungă la nivelul tumorilor cerebrale)! Se pare că nu toate citostaticele – vorbim de chimio­terapicele clasice – pot să facă acest lucru, dar, totuşi, se administrează. Totodată, vâscul are efect antiin­flamator şi antialgic în peste 50% din cazuri.
Este mare lucru să introduci un produs medica­mentos de origine vegetală în sistemul de sănătate publică, prin reţeaua de sanatorii particulare sau de stat! Cert este că toate studiile medicale au confirmat acţiunea antitumorală a extractului, fiind observate efecte benefice în majoritatea tipurilor de cancer. Extractul de vâsc este folosit ca bază terapeutică şi se administrează injectabil.

În trei luni nu se moare de cancer

La început a fost Isorelul

– Cât durează un tratament cu extract de vâsc? Bol­navul de cancer e speriat, poate că nu are cura­jul să aştepte rezultatele şi începe chimioterapia.

– Oricare tratament naturist, dacă e să-l faci în standarde reale, ar trebui să dureze trei luni. După trei luni, putem interveni cu tratamente alopate. Dar noi am încercat şi timp de o lună să declanşăm procesele normale de vindecare, iar rezultatele au fost accep­tabile.

– Speriaţi de confruntarea cu cancerul, bolnavii nu ştiu în ce direcţie să o ia. Oare ar fi mai bine să amâne tratamentul oncologic pentru a apela mai întâi la un tratament naturist? Ce înseamnă trei luni în evoluţia unui cancer? E o perioadă fatală?
– Bună întrebare, mai ales pentru bolnavii care se confruntă cu această afec­ţiune! Ar fi momentul să ne ocu­păm şi de „legendele” cancerului. Am colegi cu o foarte bună pregătire pro­fesională, care se uită scurt la bolnav şi îi spun: „Domnule, mai ai un an şi ju­mătate de trăit!”. Este normal ca aceste cuvinte să creeze o pre­destinare. Am discutat cu pacienţi puşi în astfel de situaţii: „Chiar aţi crezut în aceste… preziceri?”, i-am întrebat. „Am crezut”, mi-au răspuns, „sunt oameni cu ex­pe­ri­enţă”. Dar nicio expe­rienţă din lume nu poate să-ţi spună cât mai ai de trăit. Mă mai întreabă şi pe mine câte-un pacient: „Domnule doc­tor, mai apuc şi eu nunta fiicei mele, în august?”. Mă şi pufneşte râsul… „Măi fra­te, eu nu ştiu dacă mai ajung îna­poi acasă, la Câmpina, şi tu mă întrebi de tine? De unde să ştiu eu cât mai ai de trăit?” Practic, din această cauză, noi putem să ratăm terapia. Când vine omul la tine şi-i spui că mai are de trăit un an şi jumătate, i-ai înfipt un cuţit în spate, de care precis moare. Ei, cam asta fac medicii… La Facultatea de Medicină, din fericire, nu s-a introdus „divinaţia”! Şi atunci, ce înseamnă trei luni în evo­luţia cancerului? Nu ştiu ce înseamnă exact, dar ştiu precis că nu mori de cancer în timpul acesta!
Noi, medicii, abordăm greşit cancerul. Când pu­nem diagnosticul, există un fel de precipitare; trans­formăm deodată o boală cronică într-o boală acută. Însă cancerul este o boală cronică, iar o lună sau două nu înseamnă mare lucru în evoluţia ei! „Dacă nu intervenim rapid, pierdem momentul terapeutic!”, spun unii medici. Cu alte cuvinte, dacă nu te operăm şi nu faci chimioterapie, mori! Dar nu este chiar aşa… De multe ori, noi descoperim o tumoră întâmplător, în urma unor simptome sau a unor circumstanţe, după ce boala a avansat 4-5 ani, fără să deranjeze pacientul (se cunosc cazuri de tumori foarte mari, care au avan­sat treptat, în timp). La confirmarea diagnosticului, toată lumea intră în panică: aoleu, cancer! Atunci se produc erorile, fiindcă vin din lipsa unor protocoale medicale precise. La noi nu există comisii oncologice compuse din mai mulţi specialişti, care să analizeze fiecare caz în parte şi să stabilească dacă se impune intervenţia chirurgicală de urgenţă sau este nevoie doar de terapie. Lipsa unei astfel de comisii creează o anarhie terapeutică şi o precipitare în abordare. Mi se pare normal ca bolnavii să urmeze şi alternativa naturistă, în care poate cred mai mult decât în cea chimică, fiindcă foloseşte tratamente mai blânde şi fără efecte secundare. În plus, include şi psiho-on­cologia, cu specialişti care se ocupă de medierea psihoafectivă a pacientului de cancer şi a familiei lui, care încear­că să-l calmeze şi să-i redea optimis­mul, pentru a atenua precipitarea crea­tă de lumea medicală.

Glucoza în exces stimulează cancerul

Viscum – Abnoba

– Să revenim la tratamentul cu extract de vâsc. Trebuie însoţit de o dietă alimentară adecvată?

– Practic, în tratamentul pe care-l aplicăm nu există restricţii alimentare, decât sub o singură formă: reducerea cantităţii de glucoză. Tot ceea ce în­seamnă dulce trebuie să fie procurat din alte tipuri de alimente, mai puţin glucoza administrată ca atare. Cer­cetătorii sunt unanim de acord: glucoza stimulează dezvoltarea celulelor cance­roa­se – nu carnea, nu pro­teinele animale, nu alte idei haotice, care s-au vehiculat până acum. Un mare nutri­ţionist a spus că nu calitatea alimentelor are importanţă, ci cantitatea lor. Sigur, dacă am poftă de salam, pot să mă­nânc o feliuţă. Dar dacă mă apuc să mănânc tot salamul, e clar că substanţele nocive din compoziţie mă vor afecta. Este permis absolut orice, dar în can­tităţi pe care organismul le poate accepta.

– În ce tipuri de cancer aţi avut cele mai bune rezultate?

– Dacă tratamentul cu extract de vâsc precede tratamentul citostatic, atunci majoritatea tipurilor de cancer (mai puţin cancerul de cap de pancreas) răspund favorabil, fapt ce coincide cu rezultatele studiilor făcute de medici în cadrul universităţilor din Viena, Basel, Zürich şi München.

– Aceste rezultate se pot evidenţia prin analize medicale?

– Nu neapărat prin analize de sânge, ci prin starea clinică a pacientului şi prin analize imagistice (eco­grafii, radiografii, CT, RMN), care atestă că tumora sau metastazele se reduc. În terapiile naturiste, ana­lizele de laborator nu sunt edificatoare, deci nu ne pot ghida tratamentul. Ştim că ficatul, de exemplu, deşi funcţionează doar la 20% din capacitate, poate să dea rezultate normale din analiză. Nu mai vorbim de alte organe, unde analizele pot fi bune, dar pacientul e într-o stare precară, sau de aberaţiile pe care le dau markerii tumorali – un pacient cu marker tumoral 3000 se poate simţi mult mai bine decât unul cu marker tumoral normal, chiar dacă este într-o fază avansată a cancerului.

– Se spune că s-au descoperit multe leacuri îm­potriva cancerului, care sunt ţinute sub cheie de ma­rii producători de medicamente. Credeţi că este posi­bil acest lucru?

Fiind vorba de aspectul economic al medicinei, care ştim că poate fi foarte bine exploatat, poate că există şi această posibilitate. În plus, studiul substan­ţelor citostatice de origine chimică deschide o cale de cercetare în domeniul genetic, unde se pot folosi sub­stanţe pentru stimulări genetice sau, din contră, pentru represii genetice, ceea ce permite abordarea subiec­tului „tinereţe fără bătrâneţe” (regenerări de organe, de exemplu ) – o zonă extraordinar de bănoasă şi uşor de exploatat. Dar fără probe concrete nu putem să arătăm pe nimeni cu degetul.
La terapiile naturiste, căile nu sunt atât de des­chise; substanţele naturale nu se pot separa în produşi iniţiali, ca să îi poţi exploata. Substanţa naturală trebuie să o iei ca atare. De exemplu, extractul de vâsc a fost şi el separat în diverse componente; unele s-au dovedit a fi toxice, altele s-au dovedit a fi cancerigene şi altele s-au dovedit a fi inerte. În schimb, combinate, toate acţionează sinergic împotriva cancerului şi pen­tru stimularea imunităţii. Extractul de vâsc cu­mulează posibilităţile de regenerare ale organismului. Fiindcă terapia naturistă nu vindecă, ci trezeşte în noi vechi reflexe pe care le pierdem sau sunt atenuate din cauza vieţii haotice la care singuri ne supunem. Văd din ce în ce mai prost, pentru că stau foarte mult la calcu­lator sau la televizor; aud din ce în ce mai prost fiind­că ascult muzică la căşti.

Peste tot în lume, medicii se întorc la remediile naturale împotriva cancerului, de unde deduc că tratamentul oncologic clasic nu prea mai dă rezul­tate. În România, pacienţii sunt îndrumaţi să încea­pă tratamentul oncologic imediat după diagnos­ticare…

– Bolnavii trebuie să intre în reţeaua medicală clasică, fiindcă aceasta asigură suportul social: acce­sul la medicaţie şi terapii gratuite, accesul la concedii medicale plătite, accesul la spitalizări gratuite. Aşa­dar, primul pas este spitalul. Cunosc multe cazuri în care, încercând să meargă pe calea naturistă, pacienţii au fost refuzaţi ulterior de spitale sau de medicii care acordau concedii medicale pentru simplul motiv că nu urmaseră calea clasică şi nu existau dovezi că pacientul ar fi acceptat tratamentul, în felul acesta urmând să beneficieze de valenţele sociale ale unui asemenea tratament. Altfel spus, „Nu-ţi dau concediu medical, dacă nu faci tratament cu citostatice, pentru că nu-l pot justifica”.
Apoi, fără asistenţă medicală de specialitate nu poţi să ştii dacă eşti bolnav sau nu. Iar diagnosticarea cancerului e destul de laborioasă: există un protocol de explorări – biopsie, confirmare bioptică, confir­ma­re imunohistochimică şi analize imagistice care arată gradul de dezvoltare al tumorii, complicaţiile ei, posi­bilitatea abordării chirurgicale, radioterapeutice etc.

Stresul cronic poate duce la cancer

Dr. EDUARD ŢOGOREANU - Cu blândeţe şi optimism, despre CANCER

– Până în ce fază a cancerului se mai pot aplica tratamente naturale?

– Trebuie să se ştie că terapiile naturale luptă efec­tiv cu cancerul, ajutând organismul bolnav să funcţio­neze normal şi să-şi refacă mecanismele imunitare. Prin prisma experienţei medicale pe care o am, con­sider că bolnavul de cancer trebuie ajutat permanent, atât timp cât este în viaţă, fiindcă niciodată nu se ştie ce va urma. Nu de puţine ori s-au întâmplat şi „mi­nuni” – cazuri de vindecări inexplicabile din punct de vedere medical. Nu trebuie să uităm că este foarte importantă şi calitatea vieţii pacientului: somn adec­vat, poftă de mâncare, capacitatea de a se îngriji singur, capacitatea de efort, capacitatea de co­municare cu persoanele din jur – aspecte foarte importante, chiar dacă teoretic el nu are mari şanse de supravieţuire. Dacă i se poate prelungi viaţa cu câteva luni sau chiar ani, dacă poate fi scăpat de dureri sau de operaţii mu­ti­lante, este mare lucru! Pentru a atinge această ţintă, noi folosim şi alte ramuri ale medicinei com­ple­mentare. Am reuşit să punem la punct o combi­naţie de plante (vâsc, ardei iute şi o specie de trandafir de dulceaţă din medicina arabă) pentru creşterea imunităţii. Alături de ele, pu­tem in­clude o serie de suplimente alimentare: pen­tru uşurarea digestiei administrăm oligoele­mente, vitamina E, vitamina A+D, iar pentru susţinerea hepatică – suplimente cu rol antiin­flamator, ca Licorice(lemn dulce) root, pentru că ne intere­sează să uşurăm cât mai mult efortul organis­mului, ca să poată lupta eficient cu boala.
Nu trebuie să ignorăm nici celelalte terapii complementare care ar putea să ajute: presopunctura, kinetoterapia, fizioterapia, masajul, mişcarea. Există statistici care arată că la cei care practică sporturi de sală sau în aer liber (jogging, ciclism, fotbal, chiar şi pescuit sportiv), cazurile de cancer sunt mult mai re­duse. Sportul, în general, şi mişcarea în aer liber fac mult bine, mai ales prin decomprimarea mentală. Se ştie că stresul cronic poate cauza boli grave, inclusiv cancerul! De exemplu, ideea că sunt şomer şi nu reuşesc să-mi găsesc un nou serviciu, apăsarea unui împrumut bancar, do­rinţa de a avea mai mult etc. Vorbim aici de stresul cronic, nu de stres în sine, care de fapt e po­zitiv şi necesar orga­nis­mului.

– Care este costul unui tratament cu ex­tract de vâsc?

– Preţul variază în funcţie de fabrica pro­ducătoare. În general, costurile sunt generate în euro, deci pot exista mici fluctuaţii cauzate de cursul valutar. Pre­ţurile de farmacie pot să varieze între 280 şi 350 de lei pentru o cu­tie cu opt fiole de ex­tract pu­rificat de vâsc. În func­ţie de concentraţie, a­ces­­tea pot ajunge între cinci săptămâni şi două luni de tratament. Fiind un medicament injectabil, trebuie să mai punem la soco­teală şi costurile auxiliare: seringa, asistenta care face injecţia etc. Chiar dacă extractul de vâsc e vândut mai ieftin la noi, totuşi este destul de scump pentru pa­cienţi.

„Optimismul şi starea psihică pozitivă sunt fantastice în tratamentul cancerului”

– Cât de mult contează optimismul şi încrederea în sine pentru un bolnav de cancer?

– Extraordinar de mult! Contează mai ales cum îţi aperi singur pielea, când ai o asemenea boală. Con­tează cum abordezi boala, modul în care familia şi cei din jurul tău te privesc – ca pe un luptător sau ca pe un mort. Optimismul şi starea psihică pozitivă sunt fantastice în tratamentul cancerului. Fac mai mult bine decât cel mai eficient tratament citostatic, aş putea spune. Atunci când îţi pierzi speranţa, capitulezi în faţa bolii. Iar resemnarea duce la moarte – asta ştiu sigur!

„Nu se moare de cancer!”

Vâscul – o armă eficientă împotriva cancerului

– Ce mesaj aveţi pen­tru bolnavii de cancer?

– Am să le spun cu mare sinceritate: de cancer mori doar stupid. Mori mai degrabă călcat de o ma­şină pe trecerea de pietoni, decât de boala asta. Fiindcă este o boală cronică (asta trebuie să ne intre foarte bine în cap!), ce devine acută din cauza tera­piilor greşit folosite, a terapiilor folosite în exces, a medicilor sau terapeuţilor din sistemul naturist care prescriu de dragul de a prescrie, a familiei, care de multe ori tabără pe pacient ca să-l facă bine, dar nu ştie cu ce, şi în ultimul rând, a pacientului care, săra­cul, e încolţit din toate părţile şi, având acest diag­nostic fatidic, se consideră deja mort, îşi trage cear­şaful pe cap şi o ia uşor către cimitir… Nu se moare de cancer! Dacă facem o statistică reală, circa 80% din­tre pacienţi mor de altceva, nu de cancer. Mor de inimă, de accidente vasculare cerebrale, mor în urma complicaţiilor operaţiilor extinse la care au fost su­puşi. În plus, 8% din cancere se vindecă de la sine, fără niciun tratament, deci nu se poate prezice limita de supravieţuire a unui bolnav. Am auzit de cazul unei femei cu cancer de ovar cu metastaze peritoneale (prac­tic, reprezintă ultima fază!) care a trăit fără pro­bleme încă un an şi jumătate, dar a murit de ocluzie intestinală, din cauza primelor operaţii – s-a produs o bridă şi n-a ajuns în vreme la spital. O doamnă cu melanom ocular, la un moment dat, a venit la control. Era preocupată de faptul că voia să se recăsătorească şi n-o lăsa fiica sa – melanomul nici nu mai conta! Avea şi ea vreo trei-patru ani de la diagnostic… Sunt multe cazuri ciudate, în care există un predeterminism statistic ce nu se confirmă. Am văzut cazuri în care supravieţuirea a depăşit aşteptările medicale.

preluat dupa formulaas

Vitamina C intravenoasă în doze mari, un agent multi-ținta promițător în tratamentul cancerului

Abstract

Dovezile crescânde indică faptul că vitamina C are potențialul de a fi un agent puternic anticancerigen atunci când este administrată intravenos și în doze mari (IVC cu doze mari). Studiile clinice de fază incipientă au confirmat siguranța și au indicat eficacitatea IVC în eradicarea celulelor tumorale de diferite tipuri de cancer. În ultimii ani, efectele de țintire multiplă ale vitaminei C au fost dezlegate, demonstrând un rol ca agent citotoxic prooxidativ, specific cancerului, regulator epigenetic anticancer și modulator imunitar, inversând tranziția epitelial-mezenchimală, inhibând hipoxia și oncogenul. semnalizarea kinazei și stimularea răspunsului imun. Mai mult, IVC cu doze mari este puternică ca tratament adjuvant pentru cancer, acționând sinergic cu multe (chimio) terapii standard, precum și o metodă de atenuare a efectelor secundare toxice ale chimioterapiei. În ciuda raționamentului și a dovezilor ample, lipsesc date clinice puternice și studii de fază III. Prin urmare, este nevoie de o conștientizare mai extinsă a utilizării acestui tratament foarte promițător, netoxic pentru cancer în cadrul clinic. În această revizuire, oferim o imagine de ansamblu elaborată a studiilor preclinice și clinice care utilizează IVC cu doze mari ca agent anti-cancer, precum și o evaluare detaliată a principalelor mecanisme moleculare cunoscute implicate. Un accent special este pus pe studiile globale de profilare moleculară în acest sens. În plus, este prezentată o perspectivă asupra implicațiilor viitoare ale dozei mari de vitamina C în tratamentul cancerului și sunt discutate recomandări pentru cercetări ulterioare. tratamentul cancerului netoxic în cadrul clinic. În această revizuire, oferim o imagine de ansamblu elaborată a studiilor preclinice și clinice care utilizează IVC cu doze mari ca agent anti-cancer, precum și o evaluare detaliată a principalelor mecanisme moleculare cunoscute implicate. Un accent special este pus pe studiile globale de profilare moleculară în acest sens. În plus, este prezentată o perspectivă asupra implicațiilor viitoare ale dozei mari de vitamina C în tratamentul cancerului și sunt discutate recomandări pentru cercetări ulterioare. tratamentul cancerului netoxic în cadrul clinic

J Exp Clin Cancer Res. 2021; 40: 343.

Publicat online 2021 Oct 30. doi:  10.1186/s13046-021-02134-y

PMCID: PMC8557029PMID: 

34717701Franziska Böttger , 



# Andrea Vallés-Martí , 

# Loraine Cahn , și 

Connie R. Jimenez 

 Informații despre autor Note despre articol 

Informații privind drepturile de autor și licență 

Declinare a răspunderii

Date asociate

Declarație de disponibilitate a datelor

fundal

Vitamina C (VitC), cunoscută și sub numele de acid ascorbic sau ascorbat, este o vitamină esențială solubilă în apă care joacă un rol important în fiziologia umană. Majoritatea funcțiilor sale fiziologice implică capacitatea sa de a acționa ca antioxidant sau ca cofactor pentru o mare varietate de reacții enzimatice, contribuind astfel la stabilizarea structurii terțiare a colagenului, sintezei norepinefrinei și absorbției fierului [ 1 , 2 ]. Datele emergente arată că VitC este, de asemenea, un cofactor pentru hidroxilaze nou caracterizate din familia dioxigenazelor 2-oxoglutarat dependente de Fe care reglează transcripția genelor și căile de semnalizare celulară [ 3 ] , 4 ]]. În plus, celulele imune acumulează concentrații mari de VitC, subliniind funcția sa cheie în diferite procese din cadrul sistemului imunitar [ 5 ]. Este important, în timp ce majoritatea speciilor de vertebrate pot sintetiza acid ascorbic, oamenii nu pot și, prin urmare, sunt dependenți de consumul oral de VitC.

Conceptul de utilizare a VitC ca agent terapeutic pentru îngrijirea cancerului a fost introdus pentru prima dată de chimistul Linus Pauling, laureat cu dublu premiu Nobel, și de medicul Ewan Cameron, cu aproape 50 de ani în urmă [ 6-8 ] Mai exact, Pauling și Cameron au publicat o serie de rapoarte clinice care au indicat rate de supraviețuire semnificativ prelungite ale pacienților cu cancer terminal tratați cu doze farmacologice de VitC (10 g/zi prin perfuzie intravenoasă timp de aproximativ 10 zile și pe cale orală după aceea) în comparație cu controalele istorice comparate care au făcut-o. nu primesc VitC. Aceleași cantități de VitC în doze mari administrate pe cale orală numai în studiile randomizate dublu-orb de control placebo nu au putut confirma acest răspuns favorabil în cancerul uman avansat [ 9 , 10 ]]. Aici se află esența multor controverse privind implementarea VitC în tratamentul cancerului în ultimele decenii. Prin urmare, trebuie făcută o distincție importantă între VitC (OC) administrat oral, care ating concentrații plasmatice maxime de cel mult 220 μmol/L de sânge și IVC farmacologic sau în doze mari, care generează concentrații plasmatice în intervalul milimolar (≥ 15 mmol). /L) [ 11 – 13 ], care este necesar pentru a ucide celulele canceroase pe baza studiilor preclinice.

În lumina acestui fapt, IVC cu doze mari a reapărut ca un agent anticancer puternic în ultimele două decenii, cu câteva studii clinice de fază I și câteva de fază II raportând tolerabilitate și siguranță ridicate, cu semne promițătoare de eficacitate în tratament. de diferite tipuri de cancer, fie ca monoterapie, fie ca terapie combinată [ 14 – 16 ]. În plus, există dovezi clinice puternice pentru capacitatea IVC de a reduce efectele secundare legate de chimioterapie, cum ar fi oboseala, și de a îmbunătăți calitatea vieții și în cadrul îngrijirilor paliative [ 17 – 19 ].

Scopul acestei revizuiri este de a crea o imagine de ansamblu actualizată a celor mai importante cercetări efectuate în domeniul VitC cu doze mari și al terapiei cancerului. În primul rând, este discutată utilizarea monoterapiei și terapiei combinate cu VitC în doze mari în cadrul preclinic și clinic, urmată de o discuție despre mecanismele moleculare care s-au dovedit a fi implicate în activitatea anticancer prezentată de VitC. Mai exact, va fi evidențiată contribuția unor studii globale emergente de profilare bazate pe proteomică, transcriptomică și metabolomică la aceste perspective. În acest sens, constatările noastre vor oferi o perspectivă asupra cercetărilor viitoare, examinând lacunele actuale în cunoștințele noastre și abordând limitările cercetării în cadrul clinic și necesitatea unor studii clinice mai extinse. De asemenea,

Mergi la:

VitC în doză mare ca agent unic

Studiile clinice de pionierat care au inițiat interesul pentru VitC ca agent anticancer [ 6 – 8 ] au folosit VitC ca agent unic. De atunci, un număr mare de studii clinice și preclinice au explorat doze mari de VitC. În această secțiune, rezumăm pe scurt studiile preclinice și clinice ale VitC ca monoterapie înainte de a elabora mai multe despre studiile de terapie combinată.

Studii preclinice de monoterapie cu VitC

Un număr mare de studii au arătat încurajarea activității anticanceroase a VitC la concentrații milimolare (~ 1–20 mM) în modele preclinice de diferite tipuri de cancer [ 15 ]. Cele mai investigate au fost leucemia [ 20 – 24 ], cancerul de colon [ 25 – 32 ], melanomul [ 33 – 37 ], cancerul pancreatic [ 14 , 31 , 38 ] și cancerul de prostată [ 39 – 41 ]. Rezultate similare au fost descrise pentru tratamentul cancerului pulmonar fără celule mici (NSCLC) [ 16 ], cancerului de sân [ 31 , 42 ], cancerului ovarian [31 , 43 , 44 ], carcinom hepatocelular [ 45 , 46 ], mezoteliom malign [ 47 , 48 ], cancer tiroidian [ 49 , 50 ], carcinom bucal cu celule scuamoase [ 51 ], neuroblastomul [ 52 ] și gliomul dificil. pentru a trata glioblastom multiform (GBM) [ 16 , 53 , 54 ].

Un exemplu notabil al progresului în cercetarea preclinică VitC este munca recentă în tumorile conduse de homolog oncogene virale (KRAS) cu sarcomul de șobolan Kirsten greu de tratat, cum ar fi cancerul colorectal mutant KRAS (CRC) [ 25 , 27 , 32 ] . Pe baza studiilor anterioare ale lui Yun et al. [ 32 ] și Aguilera și colab. [ 25 ], Cenigaonandia-Campillo et al. [ 27] au folosit doze crescute de VitC (5–10 mM) în tumorile CRC mutante KRAS, atât in vitro, cât și in vivo. Ei au arătat că VitC a fost capabil să vizeze aberațiile metabolice comune prin scăderea nivelurilor de adenozin trifosfat (ATP) și transportor de glucoză 1 (GLUT-1), precum și prin disiparea potențialului membranei mitocondriale, care ar putea sensibiliza celulele CRC mutante KRAS la tratamentele curente, cum ar fi ca chimioterapie. Având în vedere importanța dezvoltării unor tratamente mai bune pentru pacienții cu tumori determinate de KRAS, combinațiile netoxice cu VitC sunt, de asemenea, explorate și vor fi discutate în următoarea secțiune 2.

În majoritatea tipurilor de cancer, majoritatea studiilor in vivo au arătat inhibarea creșterii tumorii (40-60%) prin utilizarea de doze crescute de ascorbat (1-4 g/kg) fie intravenos (IV) fie intraperitoneal (IP) [1]. 15 , 55 – 57 ]. Important, pentru a menține nivelurile de VitC în interiorul tumorii, administrarea zilnică este cel mai optim program [ 56 ]. Prin utilizarea acestor doze și frecvență, VitC a redus cu succes și/sau a afectat formarea metastazelor (50–90%) [ 33 , 39 , 43 , 58 – 61 ].

În ceea ce privește siguranța și tolerabilitatea, mai multe studii au arătat că VitC în doze mari nu crește nivelurile de toxicitate in vivo, dar protejează de alte efecte secundare ale tratamentului atunci când este utilizat ca agent adjuvant [ 15 , 62 – 64 ].

În general, studiile efectuate in vitro și in vivo folosind VitC în doze mari ca agent unic într-un număr mare de tipuri de cancer, au arătat că este un agent anti-cancer promițător care afectează atât creșterea tumorii, cât și metastaza.

Studii clinice de monoterapie VitC

Studiile clinice de monoterapie care administrează VitC în doze mari la pacienții cu diferite tipuri de afecțiuni maligne avansate raportează că această terapie este sigură, nedemonstrând nicio toxicitate semnificativă la doze de până la 3 g/kg [ 13 ] (Tabelul). 2). Aceste studii au demonstrat în plus că, la dozele date, nivelurile plasmatice de ascorbat de peste 10 mM ar putea fi susținute timp de câteva ore și au observat concentrații sanguine maxime realizabile de până la 49 mM [ 13 ]. Evenimentele adverse de gradul 3 sau mai mare posibil legate de tratamentul cu IVC au fost raportate în doar 1-2 cazuri per studiu (cu 17-24 de pacienți incluși per studiu, vezi tabelul​Masa 2),2), cele mai frecvente fiind hipokaliemia [ 13 , 65 ], hipernatremia [ 13 ], hipertensiunea arterială și anemia [ 66 ]. Riordan şi colab. [ 65 ] a raportat în plus un caz de pietre la rinichi la un pacient CRC metastatic cu antecedente de calculi renali, sugerând că IVC poate fi contraindicată la pacienții cu disfuncție renală. Nielsen și colab. [ 66 ] au raportat câte un caz de embolie pulmonară și pneumonie fiecare, ambele putând fi, de asemenea, atribuite bolii de bază, deoarece se știe că cancerul crește riscul de evenimente tromboembolice. Hoffer și colab. [ 12 ]. nu au raportat toxicități de gradul 3 sau mai mare.

masa 2

Au publicat 16 studii clinice care utilizează IVC în doze medii până la mari ca terapie anticancer

Tip (tipuri) de cancerAlocare/FazăIntervențiiVitC doza IV aSchema de dozare și injecție VitCNu paciențiiRezultateConcluzii/ComentariuRef.
Monoterapia IVC
 Cancerele avansateUn singur grup, faza 1Monoterapia IVCînalt30–110 g/m2 (0,8–3,0 g/kg), 4x/săptămână, 4 săptămâni(ambele consecutive), viteza de 1 g/min17Toate dozele au fost bine tolerate. Dozele de 70, 90 și 110 g/m2 au menținut niveluri la sau peste 10–20 mM timp de 5–6 ore (Cmax 49 mM). Fără răspuns antitumoral obiectivDoza recomandată pentru studiile viitoare este de 70–80 g/m2 (= 1,9–2,2 g/kg) pe baza Cmax13 , 125 ]
Un singur grup, faza 1Monoterapia IVCînalt0,4–1,5 g/kg, 3x/săptămână, cicluri de tratament de 4 săptămâni; doză orală de 500 mg de două ori pe zi în zilele fără perfuzie24Bine tolerat, fără toxicitate semnificativă; doza de 1,5 g/kg susține concentrațiile plasmatice de acid ascorbic > 10 mM timp de > 4 ore (Cmax 26 mM); 2 pacienți cu boală stabilă neașteptatăDoza recomandată de fază 2 este de 1,5 g/kg; ascorbatul poate fi necesar să fie combinat cu molecule citotoxice sau alte molecule redoxactive pentru a fi un tratament eficient12 ], fără identificator ClinicalTrial.gov
Un singur grup, Faza nsMonoterapia IVCmediu0,15–0,71 g/kg/zi, perfuzie continuă până la 8 săptămâni24Terapia IVC relativ sigură, doar puține și minore evenimente adverse observate; S-au atins concentrații plasmatice de ascorbat de ordinul a 1 mMSunt justificate studii clinice suplimentare cu doze mari de IVC65 ], fără identificator ClinicalTrial.gov
 ProstataFaza 2Monoterapia IVCmediu5 g săptămâna 1, 30 g săptămâna 2 și 60 g săptămâna 3–12; doză orală zilnică de 500 mg începând după prima perfuzie timp de 26 de săptămâni23Niciun pacient nu a atins obiectivul principal de reducere cu 50% a PSA; în schimb, în ​​săptămâna 12 a fost înregistrată o creștere medie a PSA de 17 μg/L; nu au fost observate semne de remisie a bolii; doza țintă de 60 g AA IV a produs o concentrație plasmatică maximă de AA de 20,3 mM [ 126 ]Acest studiu nu sprijină utilizarea AA intravenoasă în afara studiilor clinice66 , 126 , 127 ]
Terapie combinată IVC – Chimioterapia și radioterapie
 Cancerele avansateUn singur grup, Faza 1/2IVC + chimioterapie citotoxică standard de îngrijireînalt1,5 g/kg, de 2 sau 3 ori pe săptămână14Chimioterapia IVC este non-toxică și în general bine tolerată; răspunsuri individuale extrem de favorabile găsite la pacienții cu cancer de tract biliar, col uterin și cap și gât, pacienții cu cancer colorectal fără beneficiiNici nu dovedește și nici nu infirmă valoarea IVC în terapia cancerului; ilustrează potențialul de „descoperire în practica clinică”83 , 128 ]
 GlioblastomUn singur grup, faza 1IVC + RT + temozolomidă (TMZ)înaltFaza de radiație: 15–125 g, 3x pe săptămână, 7 săptămâni; Faza adjuvantă: creșterea dozei până la atingerea nivelului plasmatic de 20 mM, de 2 ori pe săptămână, 28 de săptămâni13Sigur și bine tolerat; niveluri plasmatice vizate de ascorbat de 20 mmol/L atinse în cohorta de 87,5 g; OS și PFS favorabile în comparație cu controalele istorice (numai RT + TMZ)Studiu clinic de fază 2 inițiat ( NCT02344355 ), în prezent activ, nerecrutant16 , 129 , 130 ]
 NSCLCUn singur grup, faza 2IVC + carboplatin + paclitaxelînalt75 g, de 2 ori pe săptămână14Creșterea controlului bolii și a ratelor de răspuns obiectivÎncă se recrutează ( NCT02420314 ), vezi tabelul​Tabelul 3316 , 133 ]
 OvarianFaza 1/2a, randomizatBrațul 1: IVC + carboplatin + paclitaxelBrațul 2: numai carboplatină + paclitaxelînaltCreșterea dozei până la 75 sau 100 g, cu concentrația plasmatică maximă țintă de 350 până la 400 mg/dl (20 până la 23 mM), de 2x/săptămână, timp de 12 luni (din care primele 6 luni împreună cu chimioterapie)25PFS mai lungă și toxicități substanțial scăzute în comparație cu brațul de control fără Vit C; tendință către sistemul de operare median îmbunătățitStudiul nu este alimentatpentru detectarea eficacității, mai marestudiile clinice justificate63 , 145 ]
 PancreaticUn singur grup, Faza 1/2aIVC + gemcitabinăînaltCreșterea dozei de 25–100 g în faza I, 75–100 g în faza II, de 3 ori pe săptămână, timp de 4 săptămâni14Bine tolerat, fără influență semnificativă clinic asupra farmacocineticii gemcitabineiEste necesar un studiu de fază 2/3 pentru a detectaeficacitatea și beneficiul IVC14 , 146 ]
Un singur grup, faza 1IVC + RT + gemcitabinăînalt50–100 g zilnic în timpul RT, 6 săptămâni16Sigur și bine tolerat, cu sugestii de eficacitate; OS și PFS crescut comparativ cu media instituțională; 100 g determinat a fi MTD, 75 g selectate ca doză recomandată de fază IIEste indicat un studiu de fază 2110 , 147 ]
Faza 2, randomizatBrațul 1: IVC + G-FLIP/G-FLIP-DMBrațul 2: numai G-FLIP/G-FLIP-DMînalt75–100 g, 1–2 ori pe săptămână, cu GFLIP la fiecare 2 săptămâni până la progresie26Sigur și bine tolerat. Poate evita ratele standard de 20-40% de toxicități severeNumai rezumat, nu sunt afișate date148 , 149 ]
Un singur grup, faza 1IVC + gemcitabinăînalt50–125 g, de 2 ori pe săptămână pentru a atinge nivelul plasmatic țintă de ≥350 mg/dL (≥20 mM)9Bine tolerat cu sugestii de eficacitate; au fost atinse niveluri plasmatice de 20–30 mM cu doze cuprinse între 0,75–1,75 g/kgEste indicat un studiu de fază 282 , 150 ]
Terapia combinată IVC – Terapie țintită
 Colorectal, gastricUn singur grup, faza 1IVC + mFOLFOX6 sau FOLFIRI (partea 1);IVC + mFOLFOX6 ± bevacizumab (partea 2)înaltFaza de creștere a dozei (partea 1): 0,2–1,5 g/kg, o dată pe zi, zilele 1–3, într-un ciclu de 14 zile până la atingerea MTD;Faza de extindere a vitezei (partea 2): MTD sau la 1,5 g/kg dacă MTD nu este atins36(30 colorectal,6 gastrice)MTD nu a fost atins; fără DLT; profil de siguranță favorabil și eficacitate preliminarăDoza recomandată pentru studii viitoare 1,5 g/kg/zi; extins la studiul de faza 3151 , 152 ]
 PancreaticUn singur grup, faza 1IVC + gemcitabină + erlotinibînalt50–100 g, 3x/săptămână, 8 săptămâni9Contracția tumorii la 8/9 pacienți; concentrații maxime de acid ascorbic până la 30 mmol/L în grupul cu cea mai mare dozăStudiu de fază 2 cu o perioadă de tratament mai lungă, doza de 100 g este justificată153 , 154 ]
 Limfomul non-Hodgkin cu celule BUn singur grup, faza 1Regimul IVC + CHASERînalt75 g sau 100 g de 5 ori în 3 săptămâni3Doză pentru întregul corp de 75 g sigură și suficientă pentru a atinge o concentrație serică eficientă (> 15 mM (264 mg/dl)Fără număr NCT; Este indicat un studiu de fază II155 ], fără identificator ClinicalTrial.gov
Terapia combinată IVC – Combinații cu terapii nefarmaceutice emergente
 NSCLCFaza 1/2, randomizatBrațul 1: IVC + mEHT + BSCBrațul 2: BSC singurînalt1 g/kg, 1,2 g/kg sau 1,5 g/kg, 3x/săptămână timp de 8 săptămâni (Faza 1); 1 g/kg, 3x/săptămână, 25 de tratamente în total (Faza 2)97Tratamentul IVC concomitent cu mEHT este sigur și a îmbunătățit calitatea de vie a pacienților cu NSCLC (Faza 1, Ou și colab., 2017); PFS, OS și QoL prelungite semnificativ (Faza 2)IVC + mEHT este un tratament fezabil în NSCLC avansat156 – 158 ]

Deschide într-o fereastră separată

Sunt prezentate cele 16 studii publicate care utilizează IVC cu doze medii până la mari dintr-un total de 34 de studii publicate. Toate cele 34 de studii, inclusiv cele care utilizează VitC în doză mică sau orală, sunt rezumate în Fig.​Fig.3.3. Intrările sunt ordonate în primul rând după tipul de tratament combinat și, în al doilea rând, după tipul de cancer

a Doză mare ≥1 g/kg, doză mică ≤10 g doză pentru tot corpul

ns, nespecificat; g/kg × 37 = g/m2 (1,5 g/kg = 56 g/m2); G-FLIP/G-FLIP-DM: Gemcitabină în doză mică, fluorouracil, leucovorină, irinotecan și oxaliplatin/ G-FLIP + docetaxel în doză mică și mitomicina C; Regimul CHASER: Rituximab, ciclofosfamidă, citarabină, etoposidă și dexametazonă; mFOLFOX6/FOLFIRI, oxaliplatin, leucovorin și 5-fluorouracil/irinotecan, leucovorin și 5-fluorouracil

Pe lângă faptul că este sigur și bine tolerat, răspunsul antitumoral obiectiv nu a fost observat în niciunul dintre aceste studii de monoterapie IVC. În timp ce Stephenson și colab. [ 13 ], Hoffer şi colab. [ 12 ] și Riordan și colab. [ 65 ] a raportat 3 (din 16), 2 (din 24) și 1 (din 24), respectiv pacienți cu boală stabilă, studiul lui Nielsen și colab. [ 66 ] nu au raportat semne de remisiune sau stabilizare a bolii. Ultimul rezultat este probabil legat de faptul că atât doza, cât și frecvența administrării (maximum de 60 g doză pentru întregul corp administrată o dată pe săptămână timp de 12 săptămâni) au fost considerabil mai mici în comparație cu celelalte studii (aici, au fost administrate până la 3 g/kg). de cel puțin 3 ori pe săptămână, timp de până la 8 săptămâni, vezi tabelul​Masa 2).2). Acestea fiind spuse, o serie de rapoarte de caz promițătoare au raportat un timp de supraviețuire neașteptat de lung și, în unele cazuri, chiar regresia completă a tumorii a bolii avansate sau metastatice [ 67-72 ] . În studiile viitoare, profilarea moleculară a acestor respondenți excepționali ar fi de mare valoare pentru a explora caracteristicile moleculare care fac anumite tumori mai sensibile la IVC.

În prezent, un studiu de fază II este în desfășurare prin care efectul monoterapiei cu VitC în doze mari (1,25 g/kg) este studiat în tumorile colorectale, pancreatice și pulmonare rezecabile sau metastatice (Tabel 3). Obiectivul studiului este de a investiga efectul asupra răspunsului tumoral patologic în tumorile rezecabile și de a observa răspunsul tumoral obiectiv în tumorile metastatice mutante KRAS sau BRAF ( NCT03146962 ) [ 73 ]. În plus, un efort cu doză medie în cancerul vezicii urinare ( NCT04046094 ) [ 74 ] precum și mai multe studii de monoterapie orală și/sau cu doze mici în tumori nesolide ( NCT03682029 )( NCT03613727 )( NCT03964688 – 775 ) [ 77 ] în prezent, în conformitate cu datele preclinice promițătoare privind aceste din urmă tipuri de cancer [ 21 , 78 ].

Tabelul 3

16 studii clinice în curs de desfășurare folosind IVC în doze medii până la mari ca terapie anticancer

Tip(uri) de cancerNumărul NCTAlocare/
Fază
IntervențiiTip de terapie combinatăDoza de VitC IV*Doza VitC și programul de administrareÎnscriere estimatăRezultat(e) primar(e)
colorectalNCT04516681131 ]Randomizat, faza 3Bratul 1: Acid ascorbic + chimioterapieBrațul 2: Chimioterapia în monoterapie (FOLFOXIRI+/− bevacizumab)Chimioterapie + țintităînalt1,5 g/kg/zi, D1–3, la fiecare 2 săptămâni400Rata de răspuns obiectiv
Colorectal, pancreatic, pulmonarNCT0314696273 ]Un singur grup, faza 2Cohorta A: VitC timp de 2-4 săptămâni consecutiveCohorta 2: VitC până la 6 luniCohorta 3: VitC timp de 1-2 săptămâni înainte și după radioembolizarea Y90 a metastazelor hepaticeREînalt1,25 g/kg timp de 4 zile/săptămână50Răspuns patologic (cohorta A)Rata de control al bolii la 3 luni (DCR) (cohorta B)Doza maximă tolerată (cohorta C)
Hepatocelular, pancreatic, gastric, colorectalNCT04033107132 ]Un singur grup, faza 2VitC + metformințintitînalt1,5 g/kg, D1–3, la fiecare 2 săptămâni30Supraviețuire fără progresie
PlămânNCT02420314133 ]Un singur grup, faza 2Acid ascorbic + paclitaxel + carboplatinăChimioterapieînalt75 g, de două ori/săptămână57Răspunsul tumorii
PlămânNCT02905591134 ]Un singur grup, faza 2Ascorbat + chemoRT (radioterapie + paclitaxel + carboplatin)Chimio-RTînalt75 g, de 3 ori/săptămână46Rata de progresie
LimfomNCT03602235135 ]Un singur grup, faza 1VitC + melfalanChimioterapieînalt50 g, 75 g și 100 g(metoda 3 + 3 cohorte)9Numărul de evenimente adverse legate de tratament
LimfomNCT03418038136 ]Randomizat, faza 2Brațul 1: Acid ascorbic + chimioterapie combinatăBrațul 2: Placebo + chimioterapie combinată (rituximab + ifosfamidă + carboplatină + etoposidă D1–3; rituximab + cisplatină + citarabină + dexametazonă dacă MR sau SD după 2 cure)Brațul 3: Acid ascorbic + chimioterapie combinată (ifosfamidă + carboplatină + etoposidă sau cisplatină + citarabină + dexametazonă sau gemcitabină + dexametazonă + cisplatină sau gemcitabină + oxaliplatin sau oxaliplatin + citarabină + dexametazonă)Chimio + țintit + corticosteroiziînaltDoză mare ( ns ) în zilele 1, 3, 5, 8, 10, 12, 15, 17 și 19, chimioterapie combinată în zilele 1–3;tratamentul se repetă la fiecare 21 de zile pentru până la 4 cure151Rata generală de răspuns
PancreaticNCT02905578137 ]Randomizat, faza 2Brațul 1: Ascorbat + chimioterapieBrațul 2: Chimioterapia în monoterapie (gemcitabină + nab-paclitaxel)Chimioterapieînalt75 g, de trei ori/săptămânal timp de 4 săptămâni65Supraviețuirea generală
PancreaticNCT04150042138 ]Un singur grup, faza 1VitC + chimioterapie/tratament cu celule stem (melfalan + carmustina + vitamina B12B + etanol)Chimio + Supliment alimentarînaltCreșterea dozei începând cu 3 g/m^2 și crescând la maximum 8 g/m^210Rata de mucozită, rata de grefare a Neutrofilelor +evenimente adverse, printre altele
PancreaticNCT03410030139 ]Un singur grup, Faza 1/2Acid ascorbic + nab-paclitaxel + cisplatin + gemcitabinăChimioterapieînaltconcentrație plasmatică ≥ 20 mM36Faza IB: doza recomandată pentru faza II (pentru a ajunge la ≥20 mM)Faza II: rata de control al bolii
ProstataNCT02516670140 ]Randomizat, faza 2Brațul 1: Ascorbat + DocetaxelBrațul 2: Placebo + DocetaxelChimioterapieînalt1 g/kg, de 3 ori/saptamana69Apariția scăderii PSA de > = 50% + evenimente adverse
Celula RenalăNCT03334409141 ]Randomizat, faza 2Brațul 1: Acid ascorbic + inhibitor de tirozin kinazaBrațul 2: inhibitor de tirozin kinază singur (Pazopanib)țintitînalt1 g/kg de 3 ori/săptămână91Rata fără eșec al tratamentului
SarcomNCT04634227142 ]Un singur grup, faza incipientă 1Ascorbat + gemcitabinăChimioterapieînaltDoza de 75 g pe D1–2, până la concentrația serică țintă între 20 și 30 mM (în caz contrar, doza maximă de 125 g)20Supraviețuire fără progresie
SarcomNCT03508726143 ]Un singur grup, Faza 1/2Ascorbat + radioterapieRTînalt75 g, de trei ori/săptămână25Incidența toxicităților limitatoare de doză (DLT) + răspuns tumoral
Vezica urinaraNCT0404609474 ]Un singur grup, Faza 1/2Acid ascorbicmediu25 g, de 2 ori/săptămână timp de 4 săptămâni21Stadializarea patologică post-tratament
PlămânNCT03799094144 ]Randomizat, faza 1/2Brațul 1: VitC + inhibitor de tirozin kinazaBrațul 2: inhibitor de tirozin kinaza singur (osimertinib, erlotinib sau gefitinib)țintitmediu30 g o dată/săptămână150Supraviețuire fără progresie

Deschide într-o fereastră separată

Sunt prezentate cele 16 studii care utilizează IVC cu doze medii până la mari dintr-un total de 23 de studii în curs de recrutare (starea din februarie 2021), astfel cum sunt preluate din baza de date clinicaltrials.gov (vezi și Fig.​Fig.3).3). Intrările sunt ordonate în primul rând în funcție de doza IVC mare până la medie și în al doilea rând după tipul de cancer

În general, monoterapia cu VitC în doze mari nu a fost evaluată clinic la pacienții care nu au primit anterior tratament sistemic (intens) și care nu sunt bolnavi în stadiu terminal. Acest fapt poate explica efectele de răspuns limitat observate. Găsirea unui cadru clinic fezabil pentru a include pacienți mai puțin tratați în prealabil este totuși complicată, deoarece ar implica refuzarea pacienților standard de îngrijire. Din acest motiv, aplicațiile viitoare ale VitC cu doze mari ca terapie împotriva cancerului pot fi mai degrabă în strategii combinate și ne vom concentra mai mult asupra acestei aplicații în secțiunile de mai jos. Cu toate acestea, lecții importante privind frecvența administrării pot fi învățate din aceste studii cu monoterapie, prin care numai acele studii care au administrat IVC de cel puțin 3 ori pe săptămână au justificat studii clinice suplimentare. Dozele recomandate au variat între 1,5 g/kg [12 ] la 1,9–2,2 g/kg [ 13 ].

Monoterapia VitC în îngrijirea paliativă și calitatea vieții

În îngrijirea paliativă, VitC cu doze mari câștigă teren în prezent datorită profilului său extrem de sigur și tolerabil. Nu numai că se știe că VitC în doze mari ameliorează durerea la pacienții cu cancer [ 79 ], dovezi clinice vaste sugerează că are un impact pozitiv semnificativ asupra bunăstării pacienților [ 14 , 17 – 19 , 63 , 80 – 83 ]. Acest lucru s-ar putea datora hipovitaminozei frecvente și deficienței de VitC la pacienții cu cancer [ 79 , 84 , 85 ], care sunt în mod obișnuit îmbunătățite de tratamente anti-neoplazice [ 18 ].

De exemplu, un studiu de cohortă epidemiologic retrospectiv, multicentric [ 18 ] a arătat ameliorarea apetitului, oboselii, depresiei și tulburărilor de somn la pacienții cu cancer de sân și la pacienții cu cancer terminal care suferă de o mare varietate de tipuri de cancer care au primit 7,5 g IVC complementar în timp ce erau tratați cu regimurile standard respective. Mai recent, un studiu intervențional monocentric, grup paralel, single-orb, de asemenea, la pacienții cu cancer de sân [ 86 ] a arătat o reducere similară și semnificativă a simptomelor precum greața, oboseala, durerea tumorală și pierderea poftei de mâncare prin administrarea a 25 g de IVC pe săptămână în plus față de tratamentul standard actual. În mod favorabil, nu au fost raportate reacții adverse noi după inițierea tratamentului cu IVC.

Mai mult, un alt studiu retrospectiv a arătat că pacienții cu metastaze osoase rezistente la radioterapie nu numai că au avut mai puțină durere și măsurători de performanță mai bune atunci când li s-au administrat doze mari de VitC, ci au avut un timp de supraviețuire median de 10 luni, comparativ cu timpul de supraviețuire median de 2 luni în grupul de control [ 80 ].

În general, dozele mari de VitC administrate ca agent unic nu s-au dovedit a fi sigure și bine tolerate la pacienții cu cancer, ci și ameliorează durerea și îmbunătățesc calitatea vieții în mediul de îngrijire paliativă.

Mergi la:

VitC în doze mari în tratamente combinate

Multe studii din ultimii ani au investigat dozele mari de VitC ca agent prooxidativ adjuvant, în principal în chimio- și radioterapie. În plus, au fost investigate și alte tratamente combinate. În această secțiune, trecem în revistă literatura preclinică și clinică a VitC cu doze mari în tratamente combinate.

Pentru studiile preclinice, oferim informații detaliate pe studiu și pe combinație (adică tipul de cancer, dozele de VitC, calea de administrare, dimensiunea eșantionului etc.) și descriem efectele observate, cum ar fi sinergismul, eficacitatea sporită și/sau toxicitatea redusă ( Masa 1, Figurile. 1,​,2).2). În special pentru studiile clinice, studiile finalizate și în desfășurare care utilizează IVC ca monoterapie și tratament combinat sunt descrise în detaliu (Tabelele 2,​,3,3, Smochin. 3). Examinăm informații relevante despre faza studiului, tipul de intervenții, doza IVC, schema de injecție și numărul de pacienți înscriși. În plus, rezultatele studiilor finalizate și rezultatele primare ale studiilor în curs sunt discutate pe larg.

tabelul 1

Combinații de agenți anti-cancer și VitC în doze mari în studii preclinice in vitro și in vivo

Tratament(e) combinat(e)Tipul de medicamentTip(uri) de cancerTip de studiuMarime de mostraDoza in vitroDurata TxDoza, Administrare In vivoProgram in vivoRezultateRef.
2GyRadioterapiePancreaticIn vitron  = 1 linie celulară4 mM24 hRadiosensibilizare87 ]
5-FUChimioterapiacolorectalIn vitro , In vivon  = 3 linii celulare, n  = 48 șoareci Balb/c nu/nu0,15–13,3 mM24, 48, 72, 96 h150 mg/kg IPZilnicSinergie in vitro, in vivo nici un beneficiu88 ]
GastricIn vitro , In vivon  = 2 linii celulare, n  = 60 de șoareci athymic-nu/nu1 mM1 h4 g/kg IPZilnic (20-30 de zile)Eficacitate sporită89 ]
Anti-PD-1Imunoterapielimfom cu celule BIn vivon  = 40 de șoareci BALB/c singenici imunocompetențiN/S1500 mM IPZilnic (doză majorată, 10-19 zile)Sinergie90 ]
Anti-PD-1/Anti-CTL-4ImunoterapieSân, colorectal, pancreaticIn vivon  = 13 șoareci singenici imunocompetențiN/S4 g/kg IPZilnic de 5 ori pe săptămânăSinergie și memorie imună antitumorală eficientă91 ]
ATOChimioterapiacolorectalIn vitron  = 2 linii celulare2 mM24 hSinergie92 ]
Colorectal, pancreatic (mKRAS)In vitro , In vivon  = 7 linii celulare, n  = 30 de șoareci1 mM48, 72 h1,5 g/kg IVZilnicEficacitate sporită93 ]
AML și APLIn vitron  = 5 linii celulare, n  = 48 celule primare3 mM72 hEficacitate sporită94 ]
CLLIn vitroCelule primare de n  = 18 pacienți1 mM24, 72 hEficacitate sporită95 ]
ATO + vitEChimioterapiaAPLIn vitron  = 1 linie celulară0,1 mM48 hSinergie96 ]
AuranofinAntiinflamatorSânul triplu negativIn vitro , In vivon  = 5 linii celulare, n  = 25 de șoareci nuzi elvețieni2,5 mM24 h4 g/kg IPZilnic (15 zile)Sinergie97 ]
azacitidinăChimioterapiacolorectalIn vitron  = 1 linie celulară0,01, 0,05 mM72 hSinergie98 ]
CarboplatinăChimioterapiaGastricIn vitro , In vivon  = 2 linii celulare, n  = 60 de șoareci athymic-nu/nu1 mM1 h4 g/kg IPZilnic (20-30 de zile)Eficacitate sporită89 ]
CetuximabTerapie țintităcolorectal (mKRAS)In vitro , In vivon  = 5 linii celulare, n  = N/S șoareci nuzi atimici0,3, 0,5, 0,7 mM6 h0,5 g/kg IPZilnic (14 zile)Sinergie și abrogă rezistența prin SVCT-299 ]
CisplatinăChimioterapiaGastricIn vitron  = 1 linie celulară0,000284, 0,000568 mM48 hSinergie100 ]
CervicalIn vitron  = 2 linii celulare0,000568 mM24, 48, 72 hSinergie101 ]
Scuamoasă oralăIn vitro , In vivon  = 8 linii celulare, n  = 24 de şoareci C57BL/60,125, 0,25, 0,5, 1 mM72 h4 g/kg IPZilnic (21 de zile)Sinergie51 ]
OvarianIn vitron  = 1 linie celulară2 mM2 hEficacitate sporită102 ]
CervicalIn vitron  = 2 linii celulare1, 2,5, 3,3, 16 mM24, 48, 72 hSinergie103 ]
GastricIn vitro , In vivon  = 2 linii celulare, n  = 60 de șoareci athymic-nu/nu1 mM1 h4 g/kg IPZilnic (20-30 de zile)Eficacitate sporită89 ]
CPI-613Terapie țintităCLLIn vitron  = 2 linii celulare0,1–2 mM24 hSinergie104 ]
DecitabineChimioterapiaAMLIn vitron  = 2 linii celulare0,3 mM24, 48, 72 hSinergie105 ]
colorectalIn vitron  = 1 linie de celule0,01, 0,05 mM72 hSinergie98 ]
DoxorubicinăChimioterapiaCervicalIn vitron  = 2 linii celulare1, 2,5, 3,3, 16 mM24, 48, 72 hSinergie103 ]
DoxiciclinaTerapie țintităCelule stem canceroaseIn vitron  = 1 linie de celule0,25–0,5 mM5 zileSinergie106 ]
Doxiciclina + AzitromicinăTerapie țintităCelule stem canceroaseIn vitron  = 1 linie celulară0,25 mM5 zileSinergie107 ]
mesilat de eribulinăChimioterapiaSânulIn vitron  = 6 linii celulare5, 10, 20 mM2 ore (×1 sau ×2)Eficacitate sporită108 ]
EtoposidChimioterapiaGlioblastomIn vitron  = 1 linie celulară1 mM48, 96, 144 hEficacitate sporită54 ]
FulvestrantTerapia hormonalăSânulIn vitron  = 6 linii celulare5, 10, 20 mM2 ore (×1 sau ×2)Eficacitate sporită108 ]
GefitinibTerapie țintităPlămân fără celule miciIn vitron  = 3 linii celulare0,5, 1, 2,5, 5, 10 mM1 hSinergie109 ]
GemcitabinăChimioterapiaPancreaticIn vitro , In vivon  = 6 linii celulare, n  = N/S șoareci nuzi atimici0,001 mM1 h4 g/kg IPDe două ori pe zi (6 zile)Radioprotecție și radiosensibilizare110 ]
PancreaticIn vivon  = 32 de șoareci4 g/kg IPZilnic (45 de zile)Eficacitate sporită și VitC egală cu combinația14 ]
Gemcitabină + radiații ionizante (IR)ChimioradioterapieSarcomIn vitro , In vivon  = 2 linii celulare, n  ≥ 7 per grup de tratament, șoareci athymic-nu/nu2, 5 mM1 h4 g/kg IPZilnic (40-60 de zile)Sensibilizator radio-chimio111 ]
IbrutinibTerapie țintităCLLIn vitron  = 2 linii celulare, n  = 6 celule primare0,1–2 mM24 hSinergie104 ]
IdelalisibTerapie țintităCLLIn vitron  = 2 linii celulare, celule primare de n  = 6 pacienți0,1–2 mM24 hSinergie104 ]
IrinotecanChimioterapiacolorectalIn vitro , In vivon  = 3 linii celulare, n  = 48 șoareci Balb/c nu/nu0,15–13,3 mM24, 48, 72, 96 h150 mg/kg IPZilnicSinergie in vitro, eficacitate sporită in vivo88 ]
GastricIn vitro , In vivon  = 2 linii celulare, n  = 60 de șoareci athymic-nu/nu1 mM1 h4 g/kg IPZilnic (20-30 de zile)Eficacitate sporită89 ]
GastricIn vitro , In vivon  = 5 linii celulare, n  = 24 ALB/c șoareci nuzi2, 4 mM2 h4 g/kg IPDe doua ori pe ziSinergie112 ]
MelphalanChimioterapiaMielom multipluIn vitro , In vivoCelule primare de n  = 13 pacienți, n  = 45 șoareci NOD.Cγ-Rag18, 20 mM1 h4 mg/kg IPZilnicSinergie113 ]
MetforminăTerapie multidirecționatăCLLIn vitron  = 2 linii celulare0,1–2 mM24 hSinergie104 ]
Olaparib (inhibitor PARP)Terapie țintităAML (deficit de TET2)In vitron  = 6 linii celulare0,125, 0,25, 0,5, 1 mM72 hSensibilitate sporită22 ]
Oligomicină ATerapie țintităCLLIn vitron  = 2 linii celulare0,1–2 mM24 hSinergie104 ]
OxaliplatinaChimioterapiacolorectalIn vitro , In vivon  = 3 linii celulare, n  = 48 (6 × 8) șoareci Balb/c nu/nu0,15–13,3 mM24, 48, 72, 96 h150 mg/kg IPZilnicSinergie in vitro, eficacitate sporită in vivo88 ]
GastricIn vitro , In vivon  = 5 linii celulare, n  = 24 ALB/c șoareci nuzi2, 4 mM2 h4 g/kg IPDe doua ori pe ziSinergie in vitro, eficacitate sporită in vivo112 ]
Oxaliplatin + Dieta care imita postul (FMD)Chimioterapia + Postcolorectal, pancreatic, pulmonar (mKRAS); Prostata, ovarianIn vitro , In vivon  = 11 linii celulare, n  = 38 de șoareci NSG și BALB/c≥0,3 mM24 h4 g/kg IPDe două ori pe zi (36 de zile)Sinergie114 ]
PaclitaxelChimioterapiaScuamoasă oralăIn vivon  = 96 de șoareci albinoși elvețieniN/S10 mg oralEficacitate sporită115 ]
GastricIn vitro , In vivon  = 2 linii celulare, n  = 60 de șoareci athymic-nu/nu1 mM1 h4 g/kg IPZilnic (20-30 de zile)Eficacitate sporită89 ]
PLX4032Terapie țintităGlanda tiroidaIn vitro , In vivon  = 3 linii celulare; n  = 20 de șoareci nuzi0,1–2 mM72 h3 g/kg IPZilnic (15 zile)Sinergie64 ]
SorafenibTerapie țintităFicatIn vitron  = 5 linii celulare2,5, 5, 7,5, 10, 20 mM2 hSinergie116 ]
SulfasalazinaAntiinflamatorProstataIn vitro , In vivon  = 2 linii celulare, n  = ~ 24 BALB/c șoareci nuzi1, 2 mM2-48 ore4 g/kg IPDe două ori pe zi (16 zile)Sinergie117 ]
SulindacAntiinflamatorcolorectalIn vitron  = 2 linii celulare0,5 mM48 hSinergie118 ]
TamoxifenTerapia hormonalăSânulIn vitron  = 6 linii celulare5, 10, 20 mM2 ore (×1 sau ×2)Eficacitate sporită108 ]
TemozolomidăChimioterapiaGlioblastomIn vitron  = 1 linie celulară1 mM48, 96, 144 hEficacitate sporită54 ]
Thieno-triazolo-1,4-diazepină (JQ1)Terapie țintităMelanomulIn vitro , In vivon  = 5 linii celulare; n  = 10 șoareci Gulo−/− și 10 Gulo+/+0,00005–0,0001 mM72 h3,3 g/L și 0,33 g/L, oralZilnic (14 zile)Eficacitate sporită119 ]
TMZ/carboplatin + IRChimioradioterapieGlioblastom, plămân fără celule miciIn vitro , In vivon  = 12 linii celulare, n  = ~ 42 de șoareci nuzi atimici1, 2 mM1 h4 g/kg IPZilnicSensibilizator radio-chimio16 ]
TopotecanChimioterapiaSânulIn vitron  = 1 linie celulară1 mM48 hSinergie120 ]
derivat de TPP dodecil-TPP (d-TPP)Terapie țintităCelule stem canceroaseIn vitron  = 2 linii celulare0,25–0,5 mM5 zileSinergie121 ]
TrastuzumabTerapie țintităSânulIn vitron  = 6 linii celulare5, 10, 20 mM2 ore (×1 sau ×2)Eficacitate sporită108 ]
Trietilentetramină (TETA)Terapie țintităSânulIn vitro , In vivon  = 9 linii celulare, n  = 40 BALB/c-nu1 mM12, 24 h3 g/kg IPZilnic (25 de zile)Sinergie122 ]
VemurafenibTerapie țintităMelanomul mutant BRAFIn vitro , In vivon  = 2 linii celulare, n  = 18 şoareci C57BL/61, 5 mM48 h0,03 mg/kg oralZilnicSinergie și abrogă rezistența123 ]
VenetoclaxTerapie țintităCLLIn vitron  = 2 linii celulare, celule primare de n  = 6 pacienți0,1–2 mM24 hSinergie104 ]
Vit K3 (Menadione) + Everolimus sau BarasertibVitamina + Terapie țintităTOATEIn vitron  = 1 linie celulară0,3 mM24, 72 hSinergie124 ]

Deschide într-o fereastră separată

Un total de 47 de combinații în 44 de studii preclinice din 2016 până în 2021 au fost extrase din PubMed folosind termeni de căutare (vitamina c SAU ascorbat SAU acid ascorbic) ȘI (combinație SAU sinergie SAU combinată) ȘI (cancer)

Tratament Tx , milimolar mM , IP intraperitoneal, IV intravenos, JQ1 Thieno -triazolo-1,4-diazepină, 5-FU 5-fluorouracil, vitamina Vit , iradiere IR , TMZ temozolomidă, Gem gemcitabină, Dox Doxiciclină, Oxa oxaplatină, TETA Triethylenetramine , BRAF v-raf sarcom murin oncogene viral omolog B1, PARP poli (ADP-riboză) polimerază, d-TPP TPP derivat dodecil-TPP, ATO trioxid de arsen, 3-PO3-(3-piridinil)-1-(4-piridinil)-2-propen-1-onă, LLC leucemie limfocitară cronică, leucemie mieloidă acută AML , leucemie promielocitică acută APL , ALL leucemie limfoblastică acută, translocație TET zece unsprezece

Un fișier extern care conține o imagine, o ilustrație etc. Numele obiectului este 13046_2021_2134_Fig1_HTML.jpg

Fig. 1

Prezentare generală a studiului asupra studiilor preclinice, clinice și omice care utilizează VitC în doze mari ca agent anti-cancer. Graficele cu bare estimate ale celor mai reprezentate tipuri de cancer, dozele de VitC sunt prezentate în portocaliu și includ doze mari (≥ 1 mM in vitro sau 1 g/kg in vivo și clinic), doze medii (≤ 0,5 mM in vitro) și doze mici (≤ 0,1 mM in vitro, < 1 g/kg in vivo, ≤ 10 g doză pentru tot corpul clinic). Tipurile de tumori mai puțin reprezentate sunt descrise în continuare în tabele 1,​,2,2,​,33și​și 4,4, unde sunt incluse și dozele orale, dacă este cazul. Efectul descris în studiile preclinice este exprimat în procente din numărul total de studii. Rezultatele raportate în studiile clinice finalizate sunt exprimate prin numărul de studii. Numărul de studii pe tip de profil molecular global este, de asemenea, indicat. Rezultatele omice includ n  = 20 studii in vitro și n  = 4 studii in vivo

Un fișier extern care conține o imagine, o ilustrație etc. Numele obiectului este 13046_2021_2134_Fig2_HTML.jpg

Fig. 2

Utilizarea în doze mari de VitC ca agent adjuvant în combinație cu agenți anti-cancer. A Efectul descris al a 59 de agenți anticancer combinați cu doze mari de vitC investigat într-un total de 71 de studii preclinice in vitro și in vivo (actualizate în mai 2021) care descriu sinergia, eficacitatea sporită, efectul superior sau echivalent, toxicitatea redusă și/sau nici un beneficiu. B Numărul de combinații pe tip de tratament. C Efectul descris pe grup de doză in vitro și in vivo. D Expunerea la tratament in vitro în ore și dozarea frecvenței in vivo. E Solvent descris utilizat pentru prepararea VitC. Utilizarea apei înseamnă apă MiliQ, apă demi și apă sterilă; N/S, nespecificat

Un fișier extern care conține o imagine, o ilustrație etc. Numele obiectului este 13046_2021_2134_Fig3_HTML.jpg

Fig. 3

Tipuri de cancer investigate în 34 de studii clinice VitC publicate și 23 în curs de desfășurare (starea februarie 2021). Sunt adnotate grupul de doze VitC ( A și C ; doza mare ≥1 g/kg, doza mică ≤10 g doza pentru întregul corp) și tipul de tratament ( B și D ). Vezi tabelul​Masa 22(studii publicate cu doze medii până la mari; 16/34 din totalul studiilor publicate) și Tabel​Tabelul 33(studii în curs cu doze medii până la mari; 16/23 din totalul studiilor în curs) pentru detalii

Studii preclinice de combinație

O privire de ansamblu cuprinzătoare a tuturor celor 71 de studii preluate din 1989 până în 2021 (Fig.​(Fig.1),1), investigând 59 de combinații, este prezentat în Fig.​Fig.2,2, în timp ce cele 44 de studii din ultimii 5 ani sunt rezumate mai detaliat în Tabel​Tabelul 1.1. Se poate face o împărțire între combinația foarte studiată cu chimioterapie și radioterapie, cea mai puțin studiată cu terapii țintite, combinații cu imunoterapie, care a câștigat conștientizare abia mai recent, și cu agenți anti-canceri neconvenționali (Fig.​(Fig.22B).

Studii preclinice folosind VitC în combinație cu chimioterapie și radioterapie

În modelele preclinice, se raportează că VitC în doze mari îmbunătățește eficacitatea unei game largi de chimioterapice, cum ar fi carboplatină [ 63 , 89 ], cisplatin [ 51 , 89 , 100 – 103 , 179 , 180 ], clorambucil [ 181 ] , 5-FU [ 88 , 89 , 182 ], gemcitabină [ 14 , 110 , 183 , 184 ] și temozolomidă [ 16 , 54 ]] în diferite tipuri de celule canceroase, adesea într-o manieră sinergică sau prin îmbunătățirea eficacității tratamentului (Tabel​(Tabelul 11şi Fig.​Fig.22).

De exemplu, un studiu recent in vivo în carcinomul scuamos bucal a descris un efect terapeutic îmbunătățit al cisplatinei în combinație cu VitC în doze mari (4 g/kg IP de două ori pe zi) [ 51 ]. Un studiu în cancerul pancreatic a arătat că gemcitabina administrată în combinație cu doze mari de VitC (4 g/kg IP de două ori pe zi) a obținut o inhibare semnificativă a creșterii tumorii la șoarecii purtători de xenogrefe pancreatice în comparație cu grupurile de control și numai cu gemcitabină [ 14 ].

La fel de promițător, s-a descoperit că VitC în doze mari acționează ca radiosensibilizator în timpul radiațiilor sau chimioradierii modelelor preclinice de cancer, cu specificitate ridicată pentru celulele canceroase față de celulele sănătoase [ 16 , 87 , 89 , 110 , 111 ] , 185 – 190 ].

Un exemplu notabil este studiul lui Schoenfeld et al. [ 16 ], care a investigat combinații de chimioterapie standard cu cisplatină cu VitC în NSCLC și temozolomidă standard și radiații în GBM. În acest scop, au studiat modele de linii celulare, au efectuat studii in vivo și un studiu clinic de fază I/II. Șoarecii injectați cu VitC în doză mare (4 g/kg IP zilnic) în combinație cu radio-chimioterapia (5 mg/kg carboplatină săptămânal, 12 Gy IR/2 fracțiuni (fx)) au crescut semnificativ supraviețuirea globală (~ 50% creștere), sensibilizarea acestor tumori NSCLC și GMB greu de tratat la regimurile de tratament actuale. Rezultate similare în cancerul gastric au fost descrise de O’Leary și colab., prin care VitC în doze mari (4 g/kg IP zilnic) a fost injectată în combinație cu carboplatină (15 mg/kg săptămânal), paclitaxel (10 mg/kg) și 2Gy IR/8fx [ 89]. O considerație importantă pentru studiile preclinice de combinație este standardul clinic de îngrijire la care se adaugă VitC, așa cum este exemplificat de un studiu în GBM [ 191 ] care a demonstrat o progresie mai rapidă a tumorii la șoarecii purtători de tumori tratați cu o singură doză de radiații și zilnic. ascorbat în doze mari decât la cei tratați numai cu radiații. Aici, autorii folosesc o singură doză de iradiere de 4,5 Gy, care nu se referă la tratamentul standard de îngrijire la pacienții GBM care primesc fracțiuni zilnice de până la un total de 60 Gy. În plus, doza de ascorbat mai mică relativ observată de 1 sau 2 g/kg în comparație cu 4 g/kg aplicată în studiul GBM de Schoenfeld și colab. [ 16 ], probabil a promovat proprietățile radioprotectoare ale VitC, mai degrabă decât proprietățile de radiosensibilizare.

În cele din urmă, pe lângă efectele sale de îmbunătățire în terapiile citotoxice convenționale, numeroase studii pe animale au arătat o toxicitate scăzută în afara țintă a agenților (chimio-)terapeutici după administrarea de OC și IVC [ 192 ]. În această revizuire, Carr și Cook au raportat că administrarea de VitC scade în mod obișnuit pierderea globulelor albe, pierderea în greutate, acumularea de ascită, hepatotoxicitatea, reticulocitoza, oxidarea lipidelor și cardiomiopatia indusă de agenții chimioterapeutici.

Studii preclinice care utilizează VitC în combinație cu terapia țintită

Un număr mare de studii preclinice au examinat utilizarea de VitC în doze mari combinate cu terapii țintite, cum ar fi inhibitorii de kinază (adică sorafenib, gefitinib, vemurafenib) [ 109 , 116 , 123 ], inhibitori mitocondriali (adică doxiciclină, venetocinclax, oligomy). A, metformină) [ 104 , 106 , 107 ], inhibitori de poli ADP riboză polimerazei (PARP) [ 193 ] și inhibitori de glicoliză [ 194 ].

În general, cele mai multe dintre studiile preclinice preluate au raportat efecte sinergice in vitro și/sau in vivo (Fig.​(Fig.2A),2A), care justifică studii clinice De exemplu, un studiu in vitro a arătat acțiunea sinergică anticancer a VitC în doze mari în combinație cu sorafenib, un inhibitor al multi-kinazei (de exemplu, Raf-1, B-Raf, VEGFR-1-3 și FLT3), în hepatocelulare. celule de carcinom (HCC) și, în plus, au raportat un caz de regresie prelungită a unui pacient cu HCC la tratamentul combinat cu VitC în doză mare IV și sorafenib [ 116 ]. Alte studii au raportat efecte sinergice similare pentru VitC în doze mari combinate cu inhibitori EGFR cetuximab și gefitinib în cancerul de colon cu mutație KRAS și, respectiv, celulele NSCLC [ 99 , 109 ]. Interesant, Jung et al. [ 99 ] a arătat că VitC în doză medie (0,5 g kg – 1) ar putea anula rezistența la cetuximab in vivo și a sugerat transportorul de vitamina C dependent de sodiu SVCT2 ca un marker potențial pentru creșterea eficacității tratamentului combinat de VitC și cetuximab la pacienții cu CRC cu mutație KRAS. În mod similar, rezistența la inhibitorul BRAFV600 vemurafenib a fost, de asemenea, abrogată de VitC în melanomul in vivo [ 123 ]. Descoperirile recente întăresc efectele sinergice promițătoare ale VitC cu inhibitori de kinază, cum ar fi inhibitorul BRAFV600 PLX4032 în cancerul tiroidian in vivo [ 64 ] și cu inhibitorul BTK ibrutinib și inhibitorul PI3K idelalisib la pacienții cu leucemie limfocitară cronică (LLC) [ 104 ].

De asemenea, compușii anti-cancer emergenti care vizează telomerazele, activitatea mitocondrială sau glicoliza sunt, de asemenea, sinergizați cu VitC în doză mare. De exemplu, inhibitorul de telomerază trietilentetramină (TETA) în tratamentul cancerului de sân [ 122 ], inhibitorul de glicoliză 3-(3-piridinil)-1-(4-piridinil)-2-propen-1-onă (3-PO) în Celulele NSCLC [ 194 ], metformină inhibitor al complexului I al lanțului respirator, inhibitor de ATP sintetaza oligomicină A și venetoclax inhibitor de Bcl-2 în celulele derivate de la pacienți cu LLC [ 104 ].

Mai mult, a fost confirmată eficacitatea crescută a tratamentului pentru VitC în doze mari în combinație cu mai multe tratamente hormonale, cum ar fi receptorul de estrogen ER și inhibitorii receptorului 2 al factorului de creștere epidermică uman (HER2) în celulele cancerului de sân [ 108 ], precum și pentru inhibarea PARP în tratamentul celulelor cu deficit de AML-TET2 [ 22 ] și JQ1 (tieno-triazolo-1,4-diazepină), un Bromodomain și inhibitor extraterminal, în tratamentul melanomului [ 36 ].

În cele din urmă, trei studii recente in vitro indică faptul că VitC în doze mari ar putea fi de folos în eradicarea celulelor stem canceroase (CSC) prin țintirea sinergică a mitocondriilor și cauzarea morții celulare combinată cu mai mulți agenți țintiți [ 106 , 107 , 121 ].

Toate datele combinate subliniază puternic potențialul de VitC cu doze mari ca terapie adjuvantă pentru terapiile țintite.

Studii preclinice folosind VitC în combinație cu imunoterapie și compuși antiinflamatori

Au fost efectuate puține cercetări asupra VitC în doze mari în combinație cu imunoterapie. Două studii foarte recente arată că VitC în doze mari face sinergie cu inhibitori ai punctelor de control imun (ICI) anti-PD-1 și anti-CTL-4 în modelele de șoarece, precum și crește imunogenitatea celulelor T efectoare [ 90 , 91 ]. De exemplu, Luchtel et al. [ 90 ] celule de limfom pre-tratate co-cultivate cu celule T CD8+ derivate de la donatori sănătoși cu 1 mM VitC. Interesant, ei au descris o creștere semnificativă de 15-21% a imunogenității în comparație cu celulele netratate cu VitC.

În combinație cu ICI, VitC în doză mare a afectat creșterea tumorii într-o manieră dependentă de celulele T, prin atragerea celulelor T efectoare și nu a celulelor reglatoare T. Important, la câțiva șoareci, s-au observat regresii complete și șoarecii au dobândit, de asemenea, imunitate după reinjectarea celulelor tumorale [ 91 ].]. De notat, tumorile cu deficit de reparare nepotrivită, de obicei rezistente la ICI, au arătat un răspuns foarte eficient atunci când sunt combinate cu VitC în doze mari. În plus, la administrarea de VitC în doze mari, nu numai celulele T CD8+, ci și macrofagele au prezentat o infiltrație tumorală crescută și s-au observat atât producția de Granzyme B îmbunătățită de către celulele T citotoxice, cât și producția îmbunătățită de interleukină 12 de către celulele prezentatoare de antigen. Aceste studii sunt deosebit de încurajatoare, având în vedere potențialul mare al imunoterapiei în tratamentul anticancer și sugerează că VitC în doze mari poate fi o strategie combinată promițătoare pentru a converti tumorile „reci” în tumori „fierbinte”, lărgind și mai mult sfera terapeutică a imunoterapiei.

În plus, VitC cu doze mari a îmbunătățit puternic efectele anticancer ale imunosupresorului auranofin în tratamentul cancerului de sân triplu negativ in vitro și in vivo [ 97 ]. În mod similar, compușii antiinflamatori precum sulindac [ 118 ], sulfasalazina [ 117 ] și metotrexat [ 195 ] au arătat o sinergie puternică și o eficacitate sporită în tratamentul cancerului de colon, prostată și, respectiv, hepatic.

Studii preclinice care utilizează VitC în combinație cu terapii nefarmaceutice emergente

Doza mare de VitC a fost, de asemenea, combinată cu alte regimuri mai puțin convenționale. Un studiu raportează efectul sinergic al dietei care imita postul și al oxaliplatinei în combinație cu VitC în doze mari împotriva cancerelor cu mutație KRAS atât in vitro, cât și in vivo [ 114 ].

În plus, mai multe studii au raportat sinergia efectelor anticancer ale vitaminei K3, cunoscută și sub numele de menadionă, combinată cu VitC in vitro [ 21 , 196 – 199 ]. Mai mult, un studiu in vivo a constatat că combinația acestor vitamine a redus creșterea tumorii și metastaza tumorii în carcinomul pulmonar Lewis [ 59 ]. În plus, s-a raportat că această combinație de vitamine este, de asemenea, sinergică cu inhibitorul mTOR everolimus și cu inhibitorul aurora B kinazei barasertib [ 124 ] și a sensibilizat tumorile uroteliale umane la gemcitabină [ 200 ] și diferite tumori solide la radioterapie in vivo [ 201 ], provocând în principal celule. moarte la stres oxidativ [ 202 ].

Considerații tehnice și necesitatea standardizării

Pentru a deduce cele mai bune practici, am evaluat în continuare programele de dozare, durata tratamentului și solvenții utilizați în studiile preclinice (Tabel​(Tabelul 1,1, Smochin.​Fig.22FI).

În primul rând, tipul de solvent utilizat pentru prepararea soluțiilor de VitC variază semnificativ, apa fiind cea preferată, urmată de soluție salină tamponată cu fosfat (PBS), medii de cultură -pentru studii in vitro- și soluție salină -pentru studii in vivo- (Fig.​(Fig.2E).2E). În special, aproape 45% dintre studii nu au raportat tipul de solvent utilizat în secțiunea lor de metode. De asemenea, majoritatea studiilor nu au indicat utilizarea sigiliului pentru a preveni interacțiunea dintre oxigen și lumină, nici intervalul de pH utilizat. În lumina chimiei și stabilității VitC, acestea sunt considerații importante care ar trebui standardizate pentru a obține rezultate reproductibile și robuste [ 16 , 203 , 204 ].

Deoarece efectul VitC este dependent de doză, am examinat efectul între diferite grupuri de doze, ≥ 1 mM față de < 1 mM in vitro și ≥ 1 g/kg față de < 1 g/kg in vivo (Fig.​(Fig.2C).2C). Pentru studiile in vitro, un efect sinergic a fost raportat în 80% din toate cazurile, iar 20% au arătat o eficacitate sporită. Având în vedere că cultura celulară 2D și 3D nu pot reproduce pe deplin condițiile fiziologice, studiile in vivo oferă valoare adăugată pentru studiile clinice. Pentru injecțiile IP in vivo, sinergismul a fost raportat de două ori mai des în studiile care au utilizat o doză mai mare ≥1 g/kg, comparativ cu doza mai mică <1 g/kg. Important, pentru grupul cu doză ≥1 g/kg VitC, au fost descrise efectul VitC superior [ 37 ], precum și toxicitate redusă [ 57 , 63 , 110 , 181 ]. Pentru grupul cu doză < 1 g/kg, au fost raportate mai multe exemple care nu arată niciun beneficiu suplimentar pe lângă agenții chimioterapeutici sau chiar un efect antagonist [ 88123 , 205 ], evidențiind importanța alegerii in vivo a dozelor farmacologice adecvate de VitC, de preferință ≥1 g/kg IP, atingând astfel niveluri plasmatice suficiente pentru a-și afișa proprietățile anticancerigene [ 55 ].

Durata tratamentului in vitro și frecvența in vivo au fost examinate într-un mod similar (Fig.​(Fig.2D).2D). În studiile in vitro, liniile celulare au fost expuse pentru perioade lungi (24-96 ore) sau scurte (1-2 ore) în 74 și, respectiv, 26% din cazuri, în general, în funcție de tipul de analiză și de tratamentul combinat. Deși sinergismul a fost raportat în cea mai mare parte în ambele cazuri, expunerile scurte (1-2 ore) cu un pas de reîmprospătare media sunt de obicei preferate pentru a imita mai bine condițiile fiziologice la pacienți [ 16 , 38 , 203 ]. De exemplu, capacitatea VitC de auto-oxidare dependentă de pH și prezența metalelor catalitice, cum ar fi fierul și cuprul, de obicei comune în mediile de cultură celulară, pot crește simultan producția de H 2 O 2 și pot afecta reproductibilitatea in vitro [ 206 – 208 ]]. Pentru a îmbunătăți și mai mult reproductibilitatea, s-a demonstrat că o schemă de dozare per celulă corectează toxicitatea și acumularea H2O2 în medii [ 16 , 209 ] (observații proprii, date nepublicate) În concluzie, și în conformitate cu timpul său de înjumătățire de 2 ore la pacienți, studiile in vitro ar trebui efectuate minuțios luând în considerare chimia acidului ascorbic cu condiții experimentale recomandate, cum ar fi evitarea metalelor catalitice în mediile de cultură, folosind o schemă metrică de dozare pe celulă și un Tratament de 2 ore cu un pas de reîmprospătare media [ 13 , 126 , 156 ].

In vivo, frecvența dozelor mari de VitC a fost raportată zilnic în majoritatea studiilor ( n  = 21), precum și de două ori pe zi ( n  = 6) și de două ori pe săptămână ( n  = 1). Toate programele de frecvență au indus eficacitate și sinergism îmbunătățite ale tratamentului concomitent într-o manieră similară. În plus, în multe studii nu a fost clar dacă tratamentele combinate au fost administrate concomitent sau adăugate într-o anumită secvență. În total, ceea ce era clar este că studiile in vivo de succes au folosit ≥1 g/kg IP VitC în cea mai mare parte zilnic, cu o durată de tratament cuprinsă între 2 și 8,5 săptămâni și o medie de 3,5 săptămâni.

Este de remarcat faptul că cele mai multe dintre studiile in vivo folosesc modele de sinteză a ascorbatului, ale căror caracteristici de imitare a omului pot fi puse sub semnul întrebării. Spre deosebire de oameni, șoarecii își pot sintetiza propriul VitC, făcându-i posibil modele suboptime pentru evaluarea efectului anticancer al VitC [ 55 , 210 ]. Ca model alternativ, șoarecii cu deficit de VitC (adică șoarecii Gulo-/-) au fost utilizați recent pentru a studia VitC în cancer, așa cum a fost revizuit de Campbell și Dachs [ 55 ].]. Cu toate acestea, diferitele căi de administrare și dozele din diferite studii fac aceste două modele dificil de comparat. Unele date sugerează că concentrațiile bazale de VitC în intervalul μM din plasma șoarecilor care sintetizează ascorbat (< 100 μM), similare cu nivelurile plasmatice de VitC la oamenii (sănătoși) cu absorbție normală de VitC din dietă, pot avea doar efecte minime asupra dozelor mari ( mM-range) Uciderea tumorii VitC [ 211 – 213 ]. Cu toate acestea, având în vedere nivelurile scăzute până la scorbut (adesea < 10 μM) ale VitC plasmatic la mulți pacienți cu cancer 213 – 215 ], utilizarea șoarecilor cu deficit de VitC poate fi preferată pentru a permite cercetătorilor să ajusteze mai bine condițiile fiziologice de cancer [213-215] 56 , 213 , 216]. O remarcă suplimentară este că nivelurile de ascorbat tumoral, în loc de nivelurile plasmatice, ar putea fi mai relevante pentru a monitoriza rezultatul tratamentului. Dovezile directe care abordează aceste probleme pot ajuta la o mai bună evaluare a proprietăților anti-cancer ale VitC și pot deschide calea pentru studii clinice promițătoare și robuste.

Studii clinice asupra IVC în tratamente combinate

Încurajate de rezultatele promițătoare ale studiilor clinice și preclinice de pionierat, mai multe studii clinice de fază I și unele de fază II au analizat utilizarea VitC dozată farmacologic în terapia combinată cu agenți convenționali de tratament al cancerului. O căutare în baza de date Pubmed a fost efectuată folosind termenii de căutare „ ascorbat SAU vitamina C ȘI cancer ȘI studiu clinic ”. În total, au fost identificate 34 de studii finalizate (Fig.​(Fig.3),3), dintre care 16 au studiat IVC cu doze medii până la mari (Tabel​(Masa 2),2), și 4 s-au concentrat în special pe monoterapia IVC, așa cum a fost discutat în secțiunile anterioare ale acestei revizuiri. În general, aceste studii clinice de combinație s-au concentrat pe un număr limitat de tipuri de cancer, cele incluzând doze mari de VitC, în principal referitoare la cancerul pancreatic, și doze farmacologice mai mici, în principal privind tumorile nesolide (Fig.​(Fig.3A).3A). O căutare suplimentară în baza de date clinicaltrials.gov folosind termeni de căutare vitamina C sau acid ascorbic și cancer,nu a dezvăluit niciun studiu suplimentar care a fost finalizat cu rezultatele raportate. Multe studii au fost încheiate din cauza unei modificări a standardului de îngrijire sau, mai des, din cauza unei acumulari slabe. Marea majoritate a studiilor publicate au fost efectuate cu doar un număr limitat de pacienți și, până în prezent, nu au fost finalizate studii randomizate la scară largă, dublu-orb, care sunt imperative pentru a determina eficacitatea clinică a IVC. Acestea fiind spuse, 23 de studii clinice, inclusiv un studiu de fază III, sunt în curs de desfășurare, recrutând pacienți de mai multe tipuri de cancer pentru a investiga efectele adăugării IVC într-o varietate de setari de tratament al cancerului. Șaisprezece dintre aceste studii în curs de desfășurare utilizează IVC cu doze medii până la mari și sunt raportate în tabel​Tabelul 33.

Cele mai multe dintre studiile clinice prezentate în această secțiune au mărit doza VitC pentru a obține concentrații plasmatice de ascorbat ≥20 mM. În general, acest lucru a fost obținut atunci când s-au administrat perfuzii de 75 g de cel puțin 3 ori pe săptămână și nu a fost crescut în continuare semnificativ la 100 g sau mai mult [ 14 , 16 , 110 ]. Pentru acele studii care au administrat per kg de greutate corporală, au fost necesare cantități ≥1,0 ​​g VitC/kg [ 151 ] pentru a atinge niveluri plasmatice de cel puțin 20 mM. Ne concentrăm în detaliu doar asupra acelor studii care administrează ≥1,0 ​​g/kg sau ≥75 g (doză mare) și ≥ 10 g doză pentru tot corpul (doză medie).

Studii clinice care combină chimioterapia și radioterapia

Cel mai studiat tratament combinat care utilizează doze mari de IVC este împreună cu regimurile de chimio- și/sau radioterapie (RT). Au fost identificate opt astfel de studii, dintre care jumătate au fost efectuate în cadrul cancerului pancreatic (Tabel​(Masa 2).2). Ca și în cazul monoterapiei cu VitC, toate studiile au raportat profiluri de toxicitate favorabile, cu 2 studii randomizate observând în mod specific toxicități scăzute substanțial în comparație cu brațele de control fără IVC [ 63 , 148 ], deși rezultatele ultimului studiu sunt raportate ca abstracte doar fără a prezenta date. Ambele studii au administrat 75–100 g IVC, Ma și colab. [ 63 ] De 2 ori pe săptămână timp de 12 luni (din care primele 6 luni împreună cu chimioterapie) și Bruckner și colab. [ 148] 1–2 ori pe săptămână (cu GFLIP la fiecare 2 săptămâni până la progresie). Comparativ cu terapia RT + temozolomidă (TMZ) într-un singur studiu de grup în glioblastom, adăugarea de IVC a furnizat posibil un efect protector asupra toxicităților hematologice, după cum sa apreciat, de ex. prin incidența trombocitopeniei raportate pentru regimuri de tratament similare fără IVC în alte studii [ 129 ]. Foarte important, Polireddy et al. [ 14 ] nu a găsit nicio influență semnificativă clinic asupra farmacocineticii gemcitabinei, sugerând că tratamentul combinat nu este dăunător mecanismului de acțiune al chimioterapiilor standard de îngrijire.

În concordanță cu datele pozitive obținute din studiile pe animale și din alte studii preclinice, mai multe dintre aceste studii de fază I/II au raportat tendințe către creșterea controlului bolii și ratelor de răspuns obiectiv, deși toate au fost insuficiente pentru detectarea eficacității. În studiul randomizat al lui Ma și colab. [ 63 ] în cancerul ovarian [ 63 ], timpul median pentru progresia bolii a fost cu 8,75 luni mai mare cu adaos de ascorbat la chimioterapia standard (carboplatină și paclitaxel) decât în ​​chimioterapie în monoterapie. Studiile cu un singur grup au arătat OS și PFS favorabile în comparație cu controalele istorice [ 82 , 111 , 129 ] și mediile instituționale [ 110 ].

În mod încurajator, 2 studii randomizate de fază 2 sunt în desfășurare în prezent la pacienții cu cancer pancreatic ( NCT02905578 ) [ 137 ] și prostată ( NCT02516670 ) [ 140 ], comparând direct beneficiul suplimentar al IVC cu doze mari cu chimioterapia standard. În plus, 7 studii de fază 1 și/sau 2 cu un singur grup care studiază combinația de IVC cu doze mari cu chimio- și/sau chimioradioterapie sunt în curs de desfășurare, printre altele în plămâni ( NCT02420314 și NCT02905591 ) [ 133 , 134 ] și pancreatice ( NCT030341 ) [ 139 ] bolnavi de cancer.

Studii clinice folosind VitC în combinație cu terapia țintită

Trei studii clinice nerandomizate au administrat agenți țintiți pe lângă chimioterapie și IVC cu doze mari [ 151 , 153 , 155 ]. S-au observat indicații ale unei anumite eficacități la pacienții cu cancer pancreatic metastatic în stadiul IV care au primit gemcitabină și erlotinib împreună cu IVC [ 153 ], 8/9 pacienți prezentând o contracție tumorală după numai 8 săptămâni de tratament. Un studiu similar al lui Welsh et al. [ 82 ], prin care IVC a fost combinată doar cu gemcitabină, a raportat efecte pozitive similare, cu 6/9 pacienți evaluabili menținându-și sau îmbunătățindu-și starea de performanță. Supraviețuirea globală mediană în ambele studii a fost de 182 de zile și, respectiv, de 13 luni.

Wang şi colab. [ 151 ] a combinat IVC la 1,5 g/kg o dată pe zi timp de trei zile consecutive cu mFOLFOX6 sau FOLFIRI cu sau fără bevacizumab într-un ciclu de 14 zile la pacienții cu cancer colorectal și gastric avansat (tratamentul a fost continuat timp de 12 cicluri, progresia bolii, efecte toxice de necontrolat , sau retragerea consimțământului). Pe lângă un profil de siguranță favorabil, a fost observată o potențială eficacitate clinică. Mai exact, 14/24 de pacienți evaluați au prezentat PR (rata de răspuns obiectiv, ORR, 58,3%) și 9/24 SD (ORR 37,5%), dând o rată de control al bolii de 95,8%. O observație promițătoare a fost eficacitatea comparabilă la pacienții cu tumori de tip sălbatic și cu tumori RAS/BRAF mutante. Încurajat de aceste rezultate pozitive, acest studiu a fost extins de atunci la un studiu randomizat de fază 3, cu o înrolare estimată a 400 de pacienți mCRC (NCT04516681 , vezi tabelul​Tabelul 3)3) [ 131 ]. Până în prezent, acesta este singurul studiu de fază 3 care studiază IVC cu doze mari în tratamentul anticancer.

Zece evenimente adverse de gradul 3 sau mai mare au fost raportate la cei 14 pacienți cu cancer pancreatic înrolați în Monti și colab. [ 153 ], toate acestea fiind observate frecvent în progresia bolii cancerului pancreatic și/sau tratamentul cu gemcitabină și erlotinib și, prin urmare, nu este probabil să fie legate de aplicarea concomitentă a IVC. Dintre cei 36 de pacienți înscriși în Wang et al. studiul [ 151 ], au fost înregistrate 8 evenimente adverse de gradul 3 sau mai mare, dintre care cea mai frecventă a fost neutropenia (5 cazuri), din nou cel mai probabil atribuibile schemei de chimioterapie. De asemenea, niciuna dintre reacțiile adverse înregistrate în Kawada et al. [ 155 ] studiul (neutropenie, anemie și trombocitopenie) au fost probabil atribuibile direct tratamentului IVC.

În timp ce toate aceste studii finalizate au studiat numai combinații de terapii chimio- și țintite, 3 studii aflate în desfășurare investighează acum adăugarea de IVC numai la agenții vizați (de exemplu, la pacienții cu cancer pulmonar în studiul randomizat NCT03799094 ) [ 144 ].

Studii clinice care utilizează VitC în combinație cu terapii nefarmaceutice emergente

În cele din urmă, un studiu randomizat de fază II a comparat o combinație de IVC cu doze mari plus electrohipertermie modulată (mEHT) cu cea mai bună îngrijire de susținere (BSC) cu BSC singur la pacienții cu NSCLC în stadiu avansat. Nu numai calitatea vieții, ci și PFS și OS au fost semnificativ prelungite în brațul IVC/mEHT (PFS: 3 luni vs 1,85 luni; OS: 9,4 luni vs 5,6 luni) [ 157 ], sugerând că această combinație de tratament poate fi netoxică. modalitate de a îmbunătăți prognosticul pacienților cu NSCLC avansat. Cu excepția unui caz de diaree de grad 3 la brațul activ (49 de pacienți), efectele adverse generale ale IVC și mEHT au fost marginale.

Mergi la:

Mecanisme anti-cancer

Cel mai larg descris mecanism prin care VitC este citotoxic pentru celulele canceroase într-o manieră selectivă este fața sa pro-oxidantă, care vizează dezechilibrul redox. Studii mai recente au raportat mecanisme suplimentare, cum ar fi reglarea epigenomului, senzorul de oxigen, funcțiile imunomodulatoare, tranziția epitelial-mezenchimală și reglarea activității kinazei [ 1 , 2 , 5 , 60 , 64 , 99 , 109 , 217 , 218 ] (Fig. . 4și​și 6).6). Studiile preclinice care studiază VitC în combinație cu alți agenți anti-cancer au contribuit, de asemenea, în mod semnificativ la înțelegerea mecanismelor potențiale de acțiune (MoA) ale VitC. Prin colectarea MoA descrisă din studii experimentale care datează din 2016 până în 2021, oferim o imagine de ansamblu asupra diferitelor efecte de modulare a cancerului care subliniază VitC ca agent de direcționare multiplă în legătură cu tratament (Fig.​(Fig.4).4). În total am identificat 14 efecte descrise, dintre care 7 au fost recurente (descrise de mai mult de șase ori). De asemenea, am generat o imagine de ansamblu cuprinzătoare și actualizată a efectelor de direcționare cu mai multe fațete ale VitC în tratamentul cancerului (Fig.​(Fig.66).

Un fișier extern care conține o imagine, o ilustrație etc. Numele obiectului este 13046_2021_2134_Fig4_HTML.jpg

Fig. 4

Mecanisme de acțiune descrise pentru VitC în doze mari în combinație cu agenți anticancerigen în studiile preclinice. Rezumatul efectelor anti-cancer VitC descrise în studii in vitro și in vivo pentru un total de 45 de combinații în ultimii 5 ani (2016-2021). Mecanismul detaliat al acțiunilor per agent anti-cancer este descris mai jos. Legenda culorii corespunde fiecărui mecanism descris

Un fișier extern care conține o imagine, o ilustrație etc. Numele obiectului este 13046_2021_2134_Fig6_HTML.jpg

Fig. 6

Prezentare generală a efectelor cancerului cu mai multe fațete ale VitC cu doze mari investigate în studii preclinice și omice. Reprezentare schematică a celor mai cunoscute patru efecte de modulare a VitC cu doze mari în celulele canceroase și a mecanismelor emergente recent concomitente

Activitate prooxidantă

Concentrațiile mari de VitC acționează ca un pro-oxidant, provocând citotoxicitate dependentă de peroxid de hidrogen în celulele canceroase fără a afecta negativ celulele normale [ 15 ]. Acest mecanism se bazează pe capacitatea redox VitC a metalelor, precum fierul sau cuprul, ambele în general abundente în celulele tumorale și implicate în activități catalitice importante ale enzimelor [ 219 – 222 ]. De exemplu, reducerea fierului de la Fe3 + la Fe2 + , cunoscută sub numele de reacție Fenton, permite formarea de radicali de oxigen, cum ar fi peroxidul de hidrogen.

Pe scurt, VitC în doză mare acționează ca un pro-oxidant în celulele canceroase; cu toate acestea, în celulele normale, proprietățile sale antioxidante sunt predominante [ 2 , 54 , 63 , 181 , 223 ]. Una dintre cauzele pentru care celulele canceroase sunt mai susceptibile la doze mari de VitC este nivelul crescut de fier labil (Fe 2+ fier care poate fi schimbat între reacții), care reacționează cu H 2 O 2 pentru a forma radicalul hidroxil dăunător (OH  ) [ 224]. Împreună cu nivelurile crescute de fier, celulele canceroase au în general o rată metabolică mai mare decât celulele sănătoase și o abundență de mitocondrii defecte, ceea ce duce la niveluri endogen mai mari de stres oxidativ [ 16 , 225 – 227 ]. Mai mult decât atât, celulele canceroase, în general, nu au activitate de catalază, făcându-le foarte vulnerabile la stresul oxidativ [ 2 , 228 – 230 ]. Aceste efecte anticancerigene pot fi abolite prin adăugarea în mediu a principalei enzime detoxifiante catalazei, subliniind un rol pentru H 2 O 2 [ 231 ].

În plus, celulele canceroase prezintă o expresie crescută a GLUT1. Acest transportor poate media, de asemenea, absorbția VitC oxidată (acid dehidroascorbic, DHA), care este redusă înapoi după absorbție de către celulă, ducând la epuizarea antioxidanților intracelulari, cum ar fi glutation (GSH), nicotinamidă adenin dinucleotidă fosfat (NAPDH) și enzime SOD, prin urmare creșterea în continuare a nivelurilor de specii reactive de oxigen (ROS) în celulele canceroase [ 32 ]. Este important că aceste efecte anticancerigene au fost raportate pe scară largă ca sinergice atunci când se combină VitC cu terapii țintite (Fig.​(Fig.22).

Prin urmare, creșterea în continuare a stresului oxidativ este o strategie importantă împotriva cancerului, care subliniază, de asemenea, eficacitatea terapiilor citotoxice, cum ar fi chimioterapie și radioterapia.

Multe studii au arătat în mod clar că funcțiile redox ale VitC sunt dependente de doză; acționând în principal ca un antioxidant la concentrații plasmatice normale care variază de la 30 la 80 μM și acționând ca un pro-oxidant în concentrații farmacologice de 0,5-20 mM prin creșterea ROS (adică H 2 O 2 și O 2− ) [ 1 , 232 ]. Dozele mari de VitC conduc astfel la formarea ROS și, prin urmare, țintește dezechilibrul redox, care are ca rezultat deteriorarea ADN-ului, proteinelor și lipidelor celulelor canceroase [ 15 , 30 , 38 ]]. În combinație cu terapiile chimio/radioterapie, creșterea ROS, deteriorarea ADN-ului, reducerea barierelor antioxidante (de exemplu, SOD2, Nrf2, NAPDH, GSH) și stresul mitocondrial au fost cele mai raportate MoA (Fig.​(Fig.44și​și 6),6), ceea ce poate explica efectul sinergic notoriu cu VitC (Fig.​(Fig.22).

În plus, patru studii preclinice au raportat supraexprimarea P53 atunci când VitC a fost combinat cu chimioterapice precum topotecan, oxaliplatin, irinotecan, cisplatin și 5-FU, precum și cu compus antiinflamator sulindac [ 88 , 101 , 118 , 120 ] . În special, se știe că supraexprimarea genei P53 joacă un rol cheie în reducerea nivelurilor de stres oxidativ prin, de exemplu, medierea activității enzimatice a glutation peroxidază (GPX) și aldehid dehidrogenază (ALDH) [ 233 ]. Aceste descoperiri sugerează că P53 poate fi implicat în citotoxicitatea mediată de VitC.

Interesant este că într-un studiu asupra cancerului tiroidian, inhibarea dependentă de ROS a căilor MAPK/ERK și PI3K/AKT mediază citotoxicitatea cancerului in vivo [ 49 ]. Sinergia dintre inhibitorii de kinază și VitC în doză mare poate fi parțial explicată prin dezechilibrul redox crescut, având în vedere datele recente care arată că inhibitorii de kinază induc toxicitate sinergică cu H 2 O 2 în doză mică în celulele canceroase colorectale [ 234 ].

În mod similar, un efect remarcabil de modulator al kinazei a fost observat în mai multe studii, mai ales prin reducerea nivelurilor de fosforilare ale ERK, BRAF și AKT [ 64 , 99 , 109 , 122 , 123 ] (Fig.​(Fig.22și​și 4).4). Acest efect ar putea poziționa VitC ca o alternativă promițătoare la inhibitorii kinazei în tratamentul cancerului.

În plus, efectul inhibitorilor de glicoliză poate fi, de asemenea, îmbunătățit prin doze mari de VitC într-o manieră dependentă de ROS, deoarece ambii inhibitori cresc nivelul de stres oxidativ [ 235 ]. Eficacitatea combinării VitC cu auranofinul imunosupresor poate fi, de asemenea, atribuită parțial țintirii dezechilibrului redox, deoarece s-a demonstrat că auranofina induce acumularea intracelulară de H 2 O 2 generată de VitC [ 236 ]. În mod clar, dezechilibrul redox este o țintă majoră implicată în activitatea specifică anti-cancer indusă de VitC în doze mari.

Activitate co-factorială

După cum sa menționat anterior, VitC acționează ca un agent reducător al fierului, crucial pentru funcția proteinelor care conțin Fe. Aceste enzime de sechestrare a fierului sunt implicate în numeroase procese metabolice, cum ar fi lanțul respirator mitocondrial (adică citocromul C, NADH-ubichinonă reductază sau complexul I), sinteza colagenului (prolil oxigenază) și reglarea stresului oxidativ (adică catalaza, peroxidaze) [ 237 ] .

Împreună cu funcția sa pro-oxidantă, citotoxicitatea mediată de VitC față de celulele canceroase a fost explicată și prin 1. reglarea sintezei colagenului, 2. degradarea proteazomală a factorului inductibil al hipoxiei (HIF) și 3. reglarea activității TET.

Sinteza colagenului, EMT și invazie

Reglarea sintezei de colagen este cheia pentru a împiedica progresia cancerului. Conceptul de contracarare a scăderii sintezei de colagen și, prin urmare, țintirea unei potențiale vulnerabilități metastatice în cancer prin utilizarea VitC a fost propus pentru prima dată de William McCormick cu peste 60 de ani în urmă [ 238 , 239 ] și, ulterior, extins de Ewan Cameron [ 240 ]. Una dintre componentele majore ale matricei extracelulare sunt fibrilele de colagen, care sunt formate din structuri terțiare puternice de colagen. Se știe că VitC stabilizează aceste legături încrucișate puternice, prevenind invazia neoplazică [ 241 , 242 ]. După cum sa menționat în secțiunile anterioare, studii preclinice recente [ 14 , 33 , 3943 , 58 – 61 ] și studii de caz [ 67 – 72 , 243 , 244 ] au arătat o scădere sau epuizare semnificativă a metastazelor și, respectiv, regresia completă a tumorii a bolii avansate sau metastatice. Interesant, Polireddy et al. [ 14 ] a arătat că reducerea metastatică a cancerului pancreatic a fost corelată cu nivelurile crescute de colagen stromal in vivo. În studiul lor de fază I/IIa, ei au descoperit, de asemenea, niveluri crescute de colagen la un pacient care a devenit potrivit pentru rezecția tumorii după 70 de doze de IVC (100 g/perfuzie) și 9 cicluri de gemcitabină, în comparație cu pacienții netratați, FOLFIRINOX sau tratați cu gemcitabină. [ 14].

Un alt mecanism descris prin care VitC vizează invazia cancerului este inversarea tranziției epitelial-mezenchimale [ 60 , 245 ]. Zhao și colab. [ 245 ] a raportat că VitC inhibă proliferarea, migrarea și tranziția epitelială-mezenchimală a celulelor epiteliale ale cristalinului prin dezactivarea factorului inductibil de hipoxie. Mai mult, Zeng et al. [ 60 ] a arătat o reducere a vimentinei și o creștere a nivelurilor de E-cadherină la doze mari de VitC, suprimând astfel EMT și inhibând migrarea și invazia celulară în cancerul de sân in vitro și in vivo .

În lumina activării sintezei de colagen, a reversiunii EMT și a inhibării invazivității, VitC în doze mari ar putea fi o soluție eficientă pentru prevenirea și tratamentul bolilor avansate.

Sensoarea oxigenului

Multe tumori solide devin hipoxice atunci când creșterea lor depășește apariția de noi vase de sânge în jurul lor. Pentru a le asigura supraviețuirea, celulele tumorale activează la rândul lor factorul de transcripție HIF-1 [ 246 , 247 ].

VitC reglează localizarea și funcția hidroxilazelor HIF, care dezactivează HIF-1 țintindu-l în cele din urmă spre degradarea proteazomală și, prin urmare, suprimând creșterea tumorii [ 1 , 2 , 248 – 250 ]. În special, Fischer și Miles [ 248 ] au arătat că VitC a fost capabil să scadă potențialul malign al melanomului prin împiedicarea activității HIF-1α, iar Kawada și colab. [ 155 ] a arătat o reglare în jos a HIF-1 la doze mari de VitC în celulele leucemice umane in vitro și in vivo. Jóźwiak și colab. [ 249] a găsit, de asemenea, o corelație negativă între expresia ARNm HIF-1α și nivelurile de VitC în leziunile neoplazice tiroidiene umane, sugerând că VitC poate interfera și cu activitatea transcripțională HIF-1. Lucrări suplimentare preclinice [ 251 , 252 ] și clinice [ 253 , 254 ] efectuate de Kuiper și colegii săi au confirmat această relație inversă între activitatea HIF-1 și nivelurile de ascorbat tumoral. De exemplu, în studiul lor asupra cancerului colorectal uman [ 253], niveluri mai mari de VitC tumorale au fost invers corelate cu activarea căii HIF-1 și cu o supraviețuire fără boală îmbunătățită semnificativ. Pe lângă această funcție de reglare a HIF, hipoxia este un fenomen comun în celulele tumorale și nu în celulele normale, ceea ce crește susceptibilitatea celulelor canceroase la VitC [ 255 ].

Având în vedere rolul important al hipoxiei în supraviețuirea cancerului și implicațiile sale bine-cunoscute pentru rezistența la tratament, reglarea mediată de VitC a activității HIF poate oferi o altă fațetă care este cheia pentru îmbunătățirea tratamentului tumorilor solide.

Reglarea epigenomului

Celulele canceroase sunt binecunoscute că au modele aberante de metilare a ADN-ului importante pentru supraviețuire și progresia tumorii [ 256 , 257 ]. În special, demetilarea activă a ADN-ului este efectuată de enzimele TET, care sunt frecvent mutate în afecțiunile maligne hematologice. Aceste enzime sunt dependente de ketoglutarat, fier și oxigen și aparțin aceleiași familii ca și hidroxilazele HIF și prolil hidroxilazele cruciale pentru sinteza colagenului, așa cum este descris mai sus.

În tratamentul cancerului, s-a demonstrat că VitC în doze mari induce demetilarea ADN-ului prin restabilirea și reglarea nivelurilor aberante de TET [ 3 ]. Acest rol anti-cancer VitC, necunoscut anterior, a fost investigat pe scară largă în urmă cu câțiva ani în contextul celulelor stem canceroase în progresia leucemiei [ 20 , 22 ]. Secvenţial, restaurarea TET mediată de Vit-C, de asemenea, atunci când este mutată, permite re-exprimarea genelor supresoare de tumori în celulele canceroase [ 2 , 3 , 105 , 174 ]]. Un studiu recent notabil în leucemia mieloidă acută (AML) a raportat că enzimele TET în doze mari de VitC au activat sinergic cu inhibarea izocitrat dehidrogenazei 1 mutante (IDH1), ducând la diminuarea creșterii celulare și la creșterea diferențierii mieloide [ 24 ].

Restaurarea TET mediată de Vit-C a fost, de asemenea, descrisă în patru studii preclinice care combină doze mari de VitC cu chimioterapie [ 98 ], terapie țintită [ 22 , 119 ] și ICI anti-PD-1 [ 90 ] (Fig.​(Fig.44și​și 6).6). Cimmino şi colab. [ 22 ] a arătat că, după demetilarea indusă de TET2, VitC în doză mare a fost capabilă să sensibilizeze celulele leucemice la inhibarea PARP, în principal datorită leziunilor crescute ale ADN-ului.

În plus față de enzimele TET, VitC îmbunătățește activitatea histone demetilazelor (JHDM) care conțin domeniul Jumonji C (JmjC) și împiedică astfel auto-reînnoirea aberantă a celulelor stem hematopoietice [ 3 ]. Interesant este că aceste histone demetilaze Jumonji sunt, de asemenea, responsabile pentru reglarea epigenetică a peisajului și pentru activarea răspunsurilor celulare la modificări ale metabolismului energetic, ale nivelurilor de oxigen și fier [ 219 ]. Având în vedere cele de mai sus, VitC poate stimula considerabil demetilarea în mai multe moduri, conducând la re-exprimarea genelor supresoare tumorale și astfel interferând în mare măsură cu supraviețuirea tumorii, precum și sensibilizarea la alți agenți terapeutici.

Efecte imunomodulatoare

VitC este menținută la niveluri ridicate în majoritatea celulelor imune și poate afecta multe aspecte ale răspunsului imun [ 258 ]. Contribuția ascorbatului ca antioxidant în celulele imune este bine stabilită, în timp ce activitatea sa cofactor pentru oxigenazele care conțin Fe sau Cu se conturează ca un factor cheie în efectele funcționale atât asupra răspunsului imun înnăscut, cât și asupra celui adaptiv [ 5 , 219 ]]. Această activitate necesită concentrații mM de VitC, subliniind astfel necesitatea unui aport ridicat pentru a permite o funcție imunitară adecvată, în special în condiții de inflamație și cancer când VitC devine adesea deficitar. Procesele dependente de VitC în celulele imune includ diferențierea și polarizarea celulelor mieloide și T, maturarea și activarea celulelor T, dezvoltarea celulelor B, chemotaxia, producția de citokine și uciderea îmbunătățită a cancerului mediată de celulele NK [ 5 ]. Interesant și legat de secțiunea anterioară, VitC pare să regleze, de asemenea, profilul epigenetic al celulelor imune, cum ar fi prin restabilirea activității TET în celulele iTreg, ceea ce duce la reexpresia Foxp3 și conduce la funcționarea corectă a celulelor imune [ 259 ].

În plus, două studii preclinice foarte recente au arătat că VitC în doze mari se sinergizează cu inhibitorii punctelor de control imune anti-PD-1 și anti-CTL-4 [ 90 , 91 ] (Fig.​(Fig.44și​și 6).6). Important este că Magri și colab. [ 91 ] a observat cel mai mare efect anti-cancer numai atunci când s-a administrat VitC în doze mari la șoareci imunocompetenți și nu la șoareci imunocompromiși [ 91 ]. Acest lucru indică faptul că activitatea sa antitumorală nu depinde numai de efectele sale pro-oxidante, ci și în mod substanțial de unele dintre funcțiile sale imunomodulatoare.

Mergi la:

Studii globale de profilare moleculară asupra IVC cu doze mari în contextul cancerului

Pentru a obține mai multe informații despre proprietățile anticancer ale VitC la nivel molecular, sunt justificate abordări la nivel de sistem care surprind interacțiunea complexă a diferitelor căi de semnalizare celulară. Mai exact, studiile transcriptomice și mai ales proteomice au puterea de a surprinde manifestările fenotipice ale modificărilor genetice. Până în prezent, studiile globale de exprimare a ARN-ului și proteinelor asupra acțiunii VitC în doze mari sunt limitate la câteva studii de linii celulare în anumite tipuri de cancer. Aici, rezumăm aceste studii și cele mai importante descoperiri ale acestora, luând în considerare ambele studii care analizează în mod specific efectele globale ale tratamentului cu VitC în sine (adică fără a confunda co-tratamentele), precum și efectele combinării VitC cu alte (chimio-) terapii (fig. 5, Masa 4).

Un fișier extern care conține o imagine, o ilustrație etc. Numele obiectului este 13046_2021_2134_Fig5_HTML.jpg

Fig. 5

Tipuri de cancer studiate folosind tehnici globale de profilare moleculară. Sunt adnotate grupul de doze VitC ( A ; doza mare ≥1 mM sau 1 g/kg, doza mică ≤0,1 mM), tipul de metodă de profilare utilizată ( B ) și tipul de tratament ( C )

Tabelul 4

Studii globale de profilare moleculară care investighează VitC în contextul cancerului

Tip(uri) de cancerSistem modelMetodologieTratament(e)Tip de terapie combinatăDoza de VitC aScopRezultatele OmicsRef.
Proteomica
 colorectallinii celulare DiFi (RS și XM Difi).MS pe bază de SILAC (LC–ESI–MS-MS)tratamente de 4 ore și 24 de ore cu 1 mM VitCC și/sau 50 μg/mL cetuximabțintitînaltIpoteza că VitC în combinație cu cetuximab ar putea limita apariția rezistenței secundare la blocarea EGFR în modelele de tip sălbatic CRC RAS/BRAF– Identificarea a 4147 proteineTrecerea de la glicoliză la fosforilarea oxidativă în cetuximab și celulele tratate combo la 4 ore- scăderea LDHA/LDHB- upregularea PDHA1/PDHB și a enzimelor respiratoriiPerturbarea metabolismului fierului în celulele VitC și tratate combo la 24 de ore- reglarea în jos a TFRC- upregularea FT159 ]
 Sânullinie celulară MDA-MB-231Abordarea comutatoare cu biotină (îmbogățirea proteinelor care conțin tioli oxidați) urmată de LC-MS/MSTratament de 30 min cu acid ascorbic 10 mMînaltIdentificați modificările timpurii ale redoxomului în răspunsul celular la AA care ar putea fi legate de moartea celulară indusă de AA– Identificarea a 2910 proteine ​​care conțin cisteinăȚinte oxidate la tratamentul AA:- enzime antioxidante (ex. PRDX1)- calea glicolizei și gluconeogenezei (ex. PGK1)- ciclul acidului tricarboxilic (ex. ACOT7)- ADN, ARN și metabolismul proteicOprirea ciclului celular și inhibarea translației asociate cu citotoxicitatea indusă de AA. Nivelurile de expresie PRDX1 au corelat cu citotoxicitatea diferențială AA160 ]
 Sânullinie celulară MCF7LC-MS/MS24 h tratament cu 2 mM VitCînaltEfectul VitC în sine la diferite niveluri de concentrație asupra liniei celulare de cancer de sân MCF-7– Identificarea a 1694 proteine ​​cu reglare diferentialaProcesele afectate de tratamentul cu VitC sunt incluse- răspunsul proteic nepliat și inhibarea translației celulare (eIF2α, PKR/PKR pThr-446)- proces apoptotic161 ]
 Neuroblastomlinie celulară SH-SY5YSUMO-1 IP urmat de ESI-FT ICR MS30 de minute de tratament cu 100 μM ascorbat (sau 100 μM peroxid de hidrogen)scăzutIdentificați proteinele sensibile la redox ale mecanismului de conjugare pentru SUMOilare. Au fost testate condițiile de stres oxidativ (peroxid de hidrogen), antioxidant (ascorbat) sau de control– Identificarea a 169 de proteine- Suprapunere mare între toate tratamentele- Proteinele identificate numai în proba de ascorbat au inclus DTD2 și MGAT5B- Proteinele fără site de SUMOilare prezis identificate atât în ​​tratamentele cu ascorabte, cât și cu peroxid de hidrogen au inclus TUBB4A, TUBB1, HNRNPH3, POLG2 și BUB3162 ]
 GastricLinie celulară AGSMALDI-TOF MS24 de ore de tratament cu 300 μg/mL (~ 1,7 mM) VitCînaltInvestigați mecanismul molecular al efectului inhibitor al VitC asupra creșterii celulelor AGS și profilurile de proteine ​​din celulele AGS după expunerea la tratamentul cu VitC– 20 de proteine ​​diferențiale identificate- downregulation ex. a TPM3 și TPM4- upregularea PRDX4 și TXND5- Proteinele identificate sunt implicate în principal în mobilitatea celulară, antioxidant și detoxifiere, transducția semnalului și metabolismul proteinelor163 ]
 leucemielinie celulară NB4MALDI–TOFTratament de 30 de minute cu LAA 0,5 mM (acid ascorbic)mediuIdentificarea țintelor proteice timpurii ale LAA în celulele leucemice– 9 proteine ​​diferențiale identificate- modificări ale pI ca urmare a fosforilării unei izoforme TPM)- reglarea în jos, de exemplu, a SUPT6H și HSPA8- upregulation ex. de MATN4 și NONO164 ]
 SarcomȘoareci BALB/C implantați cu celule canceroase S-180MALDI TOF-MS/MSTratament cu 1,5 mg/g ascorbat corp la fiecare trei zileînaltIdentificați proteinele implicate în inhibarea progresiei tumorii mediată de acid ascorbic– 11 proteine ​​diferențiale identificate- upregularea RKIP și ANXA5165 ]
 colorectalȘoareci BALB/C implantați cu celule canceroase CT-26MALDI TOF-MS/MSTratament cu 1,5 mg/g ascorbat corp la fiecare trei zileînaltModificările proteomului ale țesutului tumoral au fost investigate după administrarea intraperitoneală a unei concentrații mari de acid ascorbic– 18 proteine ​​diferențiale identificate- upregulation ex. ale EIF3I, NPM1 și VIM- reglarea remodelării citoscheletului166 ]
 Sânullinie celulară MCF7LC-MS/MS18 h tratament cu 1 μM DOX (doxorubicină) sau DOX + 200 μM de VitCChimioterapiemediuDescrieți modificările în expresia proteinei și proliferarea celulelor MCF-7 induse de VitC aplicat cu doxorubicină– Identificarea a 229 de proteine- Reglarea în jos a proteinelor citoscheletice (FLNA), ribozomale (de ex. RPL27A), transcripționale (de ex. HNRNPH1), ale sistemului imunitar și antioxidante (HSP90AA1, SOD1) în celulele tratate cu DOX + VitC- Supreglarea GAPDH, GPI și ACTA1167 ]
 leucemielinie celulară HL-60LC-MS/MS48 h tratament cu 10 μM As2O3 (trioxid de arsenic) sau As2O3 + 100 μM L-AA (acid ascorbic) + 50 μM α-TOC (α-tocoferol)Chimio + Supliment alimentarscăzutEvaluați mecanismul de acțiune sinergic al vitaminelor, cum ar fi acidul L-ascorbic (L-AA) și a-tocoferol (a-TOC) în chimioterapia As2O3– Numărul de proteine ​​identificate ns– Reglarea în jos a ciclului celular și translația în celulele tratate cu As2O3, L-AA și a-TOC în comparație cu numai As2O3- Identificarea a numeroase proteine ​​asociate cu apoptoza si stresul celular in tratamentul combinat96 ]
 Sân, Plămânlinii celulare A549 și MDA-MB-231MS pe bază de SILAC (LC-MS/MS)netratat (linia celulară A549 rezistentă la 1 mM AUF (auranofin) + 2,5 mM VitC, sensibilă la linia celulară MDA-MB-231)AntiinflamatornetratateDescifrați mecanismele care stau la baza răspunsului diferențial al modelelor de celule canceroase pulmonare și de sân la auranofină a moleculei de modulare redox (AUF) și la combinații de AUF și VitC– Identificarea proteinelor f 4131 comune ambelor linii celulare- proteine ​​implicate in sinteza si reducerea GSH, calea pentoza fosfatului si cele apartinand altor cai metabolice (ex. PGDH si PTGR1) mai abundente in celulele A549 (rezistente)97 ]
Transcriptomica
 Melanomullinie celulară A2058ARN-seq48 h tratament cu 0,1 mM VitCscăzutA examinat posibilele mecanisme care ar putea dezvălui modul în care VitC suprimă migrarea celulelor și creșterea independentă de ancorare a celulelor A2058– 66 de gene exprimate diferențial- alterări predominant ale genelor implicate în remodelarea matricei extracelulare.- ARGHAP30, TRIM63 și PTPN7 printre cele mai 10 gene diferențiale168 ]
 Melanomullinie celulară A2058ARN-seq7 zile tratament cu 100 μM ascorbatscăzutPentru a elucida mecanismul potențial al ascorbatului în inducerea apoptozei în celulele A2058. Reanalizați datele lui Gustafson și colab., 2015 folosind algoritmi actualizați– 344 de gene, inclusiv 20 de ARN non-coding (ARNnc) exprimate diferențial- expresia genei CLU una dintre cele mai downregulated gene36 ]
 Sânullinie celulară MDA-MB-231ARN-seqTratament de 3 zile cu 100 μM VitCscăzutAnaliza modificărilor transcriptomice asociate cu creșterea generării de 5hmC după expunerea la VitC– 778 gene exprimate diferențial- TNFSF10, TFRC și PGK1 printre cele mai 10 gene diferențiale169 ]
 Celula Renalălinie celulară 786-OARN-seqTratament pentru 10 pasaje cu 100 μM AsANa (L-ascorbat de sodiu; VitC) sau 100 μM APM (derivat VitC rezistent la oxidare)scăzutExaminați modificările fenotipului ccRCC la nivel global de transcriptom după tratamentul VitC pentru 10 pasaje– 81 de gene exprimate diferențial- cele mai notabile gene îmbogățite pozitiv în celulele tratate cu VitC aparțin unor căi metabolice multiple, cum ar fi căile peroxizomilor și pentozei fosfat- cele mai notabile seturi de gene îmbogățite negativ în celulele tratate cu VitC includ replicarea ADN-ului și genele de reparare a nepotrivirii170 ]
 Vezica urinaralinie celulară T24ARN-seq0,25 mM VitC, timp nsmediuExplorați rolul 5hmC în cancerul vezicii urinare și eficacitatea terapeutică a VitC în creșterea modelului de 5hmC– Au fost identificate 1172 de gene exprimate diferențial- gene diferențiale asociate în principal cu adeziunea focală, replicarea ADN-ului, ciclul celular și mai multe căi legate de cancer.171 ]
 HepatocelularModel de șoarece tumoral cu xenogrefă de linie celulară Huh-7MicroarrayTratament de 3 zile la șoareci cu injecție IP de 4,0 g/kg sau 2,0 g/kg ascorbatînaltEvaluați efectele dozei mari de ascorbat asupra hepatomului– 192 de gene/ARNnc exprimate în mod unic diferențial în țesutul tumoral HCC obținut de la șoareci tratați în mod specific cu doze mari de ascorbat (4,0 g/kg/3 zile)- genele dereglate au fost implicate în semnalizarea receptorului de insulină, metabolism și respirația mitocondrială172 ]
 LimfomLiniile celulare JLPS și JLPR (sensibile/rezistente la ascorbat)Microarraynetratat (linia celulară JLPR rezistentă la VitC (incubarea celulelor JLPS cu concentrații crescânde de ascorbat de la 100 μM la 1 mM timp de 6 luni), sensibile la linia celulară JLPRS)netratateIdentificați posibilele mecanisme de rezistență la ascorbat– Rezistența la ascorbat dobândită asociată cu reglarea în jos a de ex. HMGB1 și MYC și suprareglarea de ex. ATF5173 ]
 leucemielinii celulare HL60 și MOLM13ARN-seqTratament de 12 sau 72 de ore cu 250 μM L-AA (acid ascorbic)mediuAnalizați expresia genelor suprareglate prin restaurarea Tet2 în celulele cKit+ din celulele HL60 și MOLM13 tratate cu L-AA– 14/50 de gene suprareglate prin restaurarea Tet2 în celulele cKit+ de șoarece au fost, de asemenea, induse în ambele linii de leucemie umană după 12 ore de tratament cu VitC, inclusiv gene implicate în semnalizarea receptorilor apoptotici și morții (de exemplu, BAX) și semnalizarea NOTCH- Dintre genele de top reglate în jos prin restaurarea Tet2, 34/50 au fost reglate în jos în ambele linii de leucemie după 12 ore de VitC- Prin urmare, tratamentul cu VitC poate îmbunătăți funcția TET2 în celulele leucemice umane într-un mod similar cu efectele restaurării Tet2 în HSPC-urile de șoarece174 ]
 Sânullinie celulară MCF-7MicroarrayTratament de 3 zile cu 100 nM RA (acid retinoic) și/sau 1 mM AA (acid ascorbic)ChimioterapieînaltElucidați mecanismul prin care RA + AA inhibă proliferarea carcinomului mamar– 29 de gene au fost reglate în sus și 38 de gene au fost reglate în jos după tratamentul RA + AA- reglarea ascendentă a enzimelor antioxidante (de ex. GPX2) și proteinelor implicate în apoptoză (ex. CDK11B), reglarea ciclului celular (ex. EDN1) și repararea ADN-ului (ex. RAD51C)- RA sau AA singure nu au reușit să regleze genele antioxidante175 ]
Metabolomica
 Sân, colorectallinii celulare MCF-7, MDA-MB231 și HT29LC-MSTratament de 4 ore cu ascorbat 3 mMînaltObțineți o perspectivă asupra efectelor celulare ale dozelor mari de ascorbat– Schimbarea metabolică, inversarea efectului Warburg, perturbarea homeostaziei redox- Moartea celulară depinde de stresul oxidativ indus de ascorbat și acumularea de ROS, deteriorarea ADN-ului și epuizarea cofactorilor intracelulari esențiali, inclusiv NAD+/NADH- întreruperea glicolizei, scăderea rapidă a nivelului de ATP- inhibarea ciclului TCA si cresterea consumului de oxigen176 ]
 Sân, colorectallinii celulare MCF7 și HT29CE-TOF MS1 h tratament cu VitC (0,2 mM, 1 mM sau 10 mM)înaltÎnțelegeți mecanismele anticancer ale VitC– Nivelurile metaboliților din amonte în calea glicolizei și în ciclul TCA au fost crescute în ambele linii celulare după tratamentul cu VitC- Nivelurile de ATP au scăzut în funcție de concentrație- VitC a inhibat metabolismul energetic prin epuizarea NAD, inducând astfel moartea celulelor canceroase177 ]
 colorectallinii celulare HCT116 și VACO432LC-MS/MS2 mM VitC timp de 30 min până la 2 oreînaltClarificați mecanismul prin care VitC ucide celulele canceroase în timp ce scutește celulele normale. Modificări metabolice de profil în urma tratamentului cu VitC– Intermediarii glicolitici în amonte de GAPDH s-au acumulat, în timp ce cei din aval au fost epuizați, sugerând că GAPDH a fost inhibat- metaboliții oxidativi PPP au crescut, indicând faptul că blocajul poate schimba fluxul glicolitic în PPP oxidativ- Cisteina, precursorul limitator major pentru biosinteza GSH, a fost, de asemenea, epuizată dramatic după tratamentul cu VitC- După cum era de așteptat, tratamentul cu VitC a indus o creștere substanțială a ROS endogene în celulele mutante KRAS și BRAF32 ]
 Hepatocelularlinie celulară SMMC-7721Spectroscopie RMN48 h tratament cu 50 μmol/L OXA (oxaliplatină) și/sau 1 mmol/L VitCChimioterapieînaltEvaluați modificările metabolice globale ale celulelor HCC după tratamentul cu VitC– Tratamentul cu VitC a dus la inhibarea metabolismului energetic prin epuizarea NAD+ și privarea de aminoacizi- OXA a provocat perturbări semnificative în biosinteza fosfolipidelor și căile de biosinteză a fosfatidilcolinei- Metabolismul glutationului și căile legate de succinat și colină pot juca un rol central în conferirea efectului combinat între OXA și VitC178 ]

Deschide într-o fereastră separată

Douăzeci și patru de studii au fost preluate din PubMed folosind termeni de căutare (vitamina c SAU ascorbat SAU acid ascorbic) ȘI (proteomică SAU spectrometrie de masă SAU metabolomică SAU transcriptomică SAU ARN-seq SAU secvențiere ARN SAU microarray SAU genomic SAU secvențiere ADN SAU WES) cancer). doză mare ≥ 1 mM sau 1 g/kg, doză mică ≤ 0,1 mM

Studii proteomice

Au fost efectuate o serie de studii de proteomică pentru a studia efectele VitC în liniile de celule canceroase utilizând analize 2D pe bază de gel și proteomice mai cuprinzătoare bazate pe spectrometrie de masă (Tabel​(Tabelul 4).4). Aici discutăm despre ultimele studii bazate pe nano-cromatografie lichidă cuplată la spectrometria de masă. Foarte recent, a fost efectuată o analiză proteomică la scară largă (spectrometrie de masă pe bază de SILAC) în celulele CRC de tip sălbatic KRAS/BRAF (DiFi) tratate fie cu VitC (1 mM), fie cu agent anti-EGFR cetuximab, sau o combinație a ambelor [ 159]. A fost analizată atât expunerea pe termen scurt (4 ore), cât și pe termen lung (24 ore). Printre cele mai izbitoare observații a fost o scădere a glicolizei în cetuximab și celulele tratate combo la momente timpurii, în timp ce proteinele legate de metabolismul fierului, cum ar fi feritina și receptorul de transferină TFRC, au fost, respectiv, reglate în sus și în jos în celulele VitC și tratate cu combo. la momente ulterioare. Pe baza acestor rezultate, precum și a experimentelor suplimentare de profilare metabolică, autorii au propus un model prin care trecerea indusă de cetuximab de la glicoliză la fosforilarea oxidativă face celulele canceroase mai susceptibile la stresul oxidativ indus de VitC. Mobilizarea ulterioară a bazinelor de fier și inducerea stresului mediat de ROS de către VitC ar putea duce în cele din urmă la deteriorarea lipidelor membranei și moartea celulelor.160 ]. Pe lângă enzimele antioxidante (cum ar fi PRDX1) și proteinele legate de ciclul glicolizei și TCA (de exemplu PGK1) care arată o creștere semnificativă a oxidării la tratamentul cu acid ascorbic, analiza acestui set de date redoxom a sugerat în plus că inhibarea translației poate fi unul dintre mecanismele posibile. responsabil pentru citotoxicitatea acidului ascorbic bazată pe stresul oxidativ. Folosind o abordare proteomică fără etichete, un alt studiu privind cancerul de sân a analizat efectul pe termen lung (24 de ore) al VitC 2 mM asupra proteomului celulelor MCF-7. 161 ].]. Pe lângă proteinele direct legate de apoptoză, proteinele implicate în procesarea proteinelor în ER au fost reglate în plus după tratamentul cu VitC. În mod specific, eIF2α și PKR/PKR pThr-446 au fost sugerate a fi responsabile pentru răspunsul proteic desfășurat și inhibarea translației celulare în timpul stresului reticulului endoplasmatic, care poate fi un rezultat direct al stresului oxidativ crescut. Un studiu care se concentrează pe mașinile de conjugare pentru SUMOilare ca răspuns la doze mici (100 μM) de ascorbat a efectuat SUMO-1 IP urmat de ESI-FT ICR MS în linia celulară de neuroblastom SH-SY5Y [ 162 ]. Acest studiu a identificat, printre altele, DTD2 și MGAT5B, două proteine ​​fără site de SUMOilare prezis, legate de translație și, respectiv, de glicozilare, cu abundență crescută în urma tratamentului cu ascorbat (dar nu cu peroxid de hidrogen).

În ceea ce privește efectul combinării VitC cu alte (chimio-) terapii, un studiu LC-MS/MS în linia celulară de cancer de sân linia celulară MCF7 [ 167 ] a arătat că combinarea inhibitorului topoizomerazei II doxorubicină cu doza medie (200 μM) de VitC a condus la un reglarea în jos a proteinelor ribozomale, transcripționale și translaționale, precum și a proteinelor antioxidante (de exemplu, SOD1). Scăderea expresiei proteinelor care reglează ciclul celular și translația a fost găsită și la tratarea liniei celulare de leucemie HL-60 cu o combinație de VitC, ATO și tocoferol (vitamina E) în doză mică (100 μM). 96 ].]. Un studiu de spectrometrie de masă bazat pe SILAC a examinat modificările proteomice în 2 linii celulare (A549 și MDA-MB-231) cu sensibilități diferite la auranofină (AUF) moleculei antiinflamatorii modulante redox în combinație cu doze farmacologice (2,5 mM) de VitC. 97 ]. Cel mai important, nivelurile ridicate de expresie ale proteinelor metabolice cu activitate de oxidoreductază, cum ar fi TXNRD1, ALDH3A2 și PTGR1, au fost legate de rezistența celulară la combinațiile AUF/VitC, în conformitate cu mecanismele antioxidante crescute care contracarează activitățile anticancer ale VitC cu doze mari.

Studii transcriptomice

Majoritatea studiilor care investighează modificările transcriptomului după tratamentul cu VitC au utilizat doze mai mici de 1 mM. Trei studii ale aceluiași grup au analizat efectul 0,1 mM VitC asupra liniilor celulare de sân și melanom folosind secvențierea ARN [ 36 , 168 , 169 ]. Aceste analize au evidențiat, printre altele, dereglarea clusterinei genei apoptotice, precum și a genelor implicate în remodelarea matricei extracelulare în linia celulară de melanom A2058, precum și creșterea transcrierilor ligandului de inducere a apoptozei (TRAIL) legate de TNF în linia celulară de cancer de sân MDA-MB -231. Ultimul studiu a identificat, de asemenea, gene legate de metabolismul fierului (TFRC) și glicoliza (PGK1), în conformitate cu modificările induse de VitC la nivelul proteinei observate în studiile proteomice menționate anterior [ 159 ,160 ]. Ge și colegii [ 170 ] au investigat efectele expunerii la VitC pe termen lung (10 pasaje), la doză mică (0,1 mM) asupra liniei celulare renale 786-O și au descoperit că, în timp ce procesele metabolice precum glutationul și metabolismul pentozo-fosfatului au fost pozitive. îmbogățite, genele legate de replicarea ADN-ului și repararea nepotrivirii au prezentat o îmbogățire negativă. O dereglare puternică similară a genelor legate de replicarea ADN-ului a fost observată de același grup la tratarea liniei celulare de cancer de vezică urinară T24 cu doze medii (0,25 mM) de VitC [ 171 ]. Un studiu remarcabil s-a concentrat pe efectele dozei mari de ascorbat asupra transcriptomului modelelor de șoarece hepatocelular cu xenogrefă de linie celulară Huh-7, așa cum a fost testat prin analiza cu microarray. 172 ]]. Au fost identificate modificări ale nivelurilor de transcriere ale genelor implicate în semnalizarea receptorului de insulină, metabolismul și respirația mitocondrială, printre care s-a numărat și reglarea în sus a receptorului specific al produsului final de glicozilare avansată (AGER). Posibil legate de acest lucru sunt descoperiri derivate din microarray cu privire la rezistența dobândită în liniile celulare de limfom de către același grup. 173]. Aici, celulele JLPR rezistente la ascorbat (care au fost generate prin incubarea celulelor JLPS sensibile cu concentrații crescânde de ascorbat de la 0,1 la 1 mM pe parcursul a 6 luni) au fost caracterizate nu numai prin niveluri crescute de gene precum feritina, topoizomeraza II și glutation peroxidaza 4, dar de asemenea, prin expresia scăzută a casetei 1 de proteine ​​de grup cu mobilitate ridicată (HMGB1), unul dintre liganzii AGER. În general, așa cum era de așteptat și așa cum se observă în mai multe dintre studiile proteomice, modificările abundenței induse de VitC în genele apoptotice sunt, de asemenea, raportate în multe dintre studiile transcriptomice [ 36 , 169 , 173 – 175 ].

Luate împreună, atât studiile proteomice, cât și cele transcriptomice au identificat multe fațete cunoscute ale acțiunii VitC în uciderea celulelor canceroase, inclusiv mecanismele apoptotice, redox și metabolice, dar au dezvăluit și roluri mai puțin definite ale acidului ascorbic, cum ar fi reglarea remodelării citoscheletului și inhibarea traducerea (proteomică), precum și replicarea și repararea ADN-ului (transcriptomică). Procesele cheie găsite a fi modificate în studiile cu doze mari de VitC includ în mod specific alterarea homeostazei fierului, întreruperea glicolizei și inhibarea translației (Fig.​(Fig.6).6). În plus, au fost identificate proteinele critice implicate în aceste căi, care pot oferi piste pentru viitoare strategii de (co-)țintire.

Studii metabolomice

În cele din urmă, patru studii au căutat să profileze la nivel global modificările metabolice induse de administrarea de doze mari de VitC în modelele de linii celulare de cancer de sân, colorectal și hepatocelular [ 32 , 176 – 178 ]]. Deși durata tratamentului și modelul experimental au diferit în funcție de studiu, toți au observat o scădere a nivelurilor de ATP și o depleție a NAD în urma expunerii la doze mari de VitC, în conformitate cu inhibarea metabolismului energetic și recablarea metabolică cu mai multe fațete descrise în numeroase studii preclinice. folosind abordări alternative. În general, metaboliții glicolitici din amonte de GAPDH s-au îmbogățit în urma tratamentului cu VitC cu doze mari, în timp ce cei din aval au fost epuizați, în conformitate cu o inhibare a GAPDH de către VitC, ducând în cele din urmă la întreruperea glicolizei și a ciclului TCA observat de asemenea în mai multe studii de proteomică (Tabelul).​(Tabelul 4,4, Smochin.​Fig.66).

Mergi la:

Concluzii și perspective

În recenzia lor din 1979 „Acidul ascorbic și cancerul: o revizuire” [ 242], Linus Pauling și colegii și-au exprimat speranțele că „testele controlate concepute corespunzător” vor fi efectuate în curând pentru a „confirma sau respinge” constatările lor clinice și că, dacă vor fi confirmate, „ascorbatul va deveni în curând o parte esențială a tuturor tratamentelor practice pentru cancer și cancer. regimuri de prevenire”. Deși această viziune nu a devenit încă realitate, numărul tot mai mare de studii preclinice și clinice în stadiu incipient, bine concepute, cu impact ridicat, contribuie la avansarea domeniului VitC cu doze mari în contextul îngrijirii cancerului. În plus, odată cu creșterea strategiilor globale de profilare, cum ar fi metabolomica, transcriptomica și proteomica pe scară largă care conduc la delimitarea în continuare a mecanismelor de acțiune a vitaminei C, studiile clinice viitoare pot fi concepute pe baza unor argumente mai rafinate.

Pe baza caracterizării moleculare a celulelor tumorale, devine din ce în ce mai evident că subgrupurile de pacienți care adăpostesc anumite mutații genetice sau care supraexprimă anumite proteine ​​pot fi deosebit de susceptibile de a beneficia de terapii mono și combinate cu VitC. Acest lucru este valabil și pentru tumorile care prezintă mutații KRAS, de exemplu, care sunt în general dificil de tratat, fiind rezistente la terapia anti-EGFR țintită, printre altele. În acest sens, se așteaptă ca un impuls suplimentar pentru implementarea unei doze mari de VitC în îngrijirea cancerului să apară dintr-o inițiativă a programului de caritate Stand Up to Cancer (SU2C) – Asociația Americană pentru Cercetarea Cancerului, care strânge bani pentru cancerul translațional. cercetare prin campanii ample de conștientizare a mass-media.73 ]. În mod important, sunt planificate secvențierea genomului și profilarea expresiei ARN a tumorilor colectate în acest studiu de fază II, într-o încercare de a transpune în continuare perspectivele mecaniciste preclinice asupra acțiunii VitC în cadrul clinic. S-a demonstrat că VitC ucide selectiv celulele cancerului colorectal mutant KRAS și BRAF prin țintirea GAPDH [ 32 ], ceea ce poate explica, de asemenea, de ce VitC se dovedește a fi deosebit de promițător în tratamentul cancerului pancreatic, unde peste 90% dintre cazuri poartă mutații KRAS. [ 260 ] și MM, unde genele familiei RAS prezintă, de asemenea, cele mai frecvente mutații [ 113 ]]. În plus, tumorile care prezintă o mutație TET2 sau IDH-1 pot fi deosebit de sensibile la tratamentul cu VitC și acest lucru este valabil și pentru tipurile de cancer care au concentrații mari de fier labil, datorită exprimării scăzute a Ferroportinei 1 (Fpn1), de exemplu. Foarte important, mutațiile IDH-1/2 reprezintă o strategie importantă împotriva cancerului pentru tipurile de cancer greu de tratat, aceste mutații apărând în ~ 70–80% din glioamele de grad inferior și în majoritatea glioblastoamelor secundare și în până la 20% a pacienților cu LMA [ 261 , 262 ]. În ceea ce privește TET2, mutațiile acestei gene sunt observate în diferite afecțiuni mieloide maligne și sunt legate de prognosticul AML. 263 ].]. În plus, VitC în doze mari are, de asemenea, un efect mai mare asupra tumorilor cu deficit de reparare a nepotrivirii (MMR) decât asupra celor competente în MMR, sugerând că efectul antitumoral al VitC este îmbunătățit în tumorile care adăpostesc sarcini crescute mutaționale/neoantigene [ 91 ]. În plus, sulindac și VitC ar putea fi o nouă strategie terapeutică anti-cancer pentru cancerele de colon de tip sălbatic p53, deoarece acest lucru provoacă apoptoza într-o manieră dependentă de p53 [ 118 ]. În cele din urmă, utilizarea unei doze mari de VitC în terapia cu puncte de control imun poate aduce beneficii unei game largi de pacienți cu cancer, în special a celor care au o expresie scăzută a PD-1/PDL-1 [ 90 ].

O necesitate absolută în încercarea de a face VitC în doze mari disponibile mai pe scară largă pentru pacienții cu cancer este efectuarea de studii clinice randomizate de fază III pe grupuri mari de pacienți (de obicei peste 300), cu scopul de a evalua eficacitatea VitC (combinații) comparativ cu la tratamentul actual „standard de aur” pentru un anumit tip de cancer. Datorită naturii lor costisitoare și consumatoare de timp, nu au fost finalizate astfel de teste pentru VitC până în prezent. Cu toate acestea, pe baza rezultatelor promițătoare ale studiilor clinice preclinice și de fază incipientă în cadrul cancerului colorectal [ 12 , 13 , 32 , 151], un studiu chinezesc de fază III care urmărește să evalueze eficacitatea combinării cu doze mari de VitC IV (1,5 g/kg) cu FOLOX +/− bevacizumab versus tratamentul cu FOLFOX +/− bevacizumab în monoterapie ca terapie de primă linie la pacienții cu recurente sau avansate. cancerul colorectal este în curs de desfășurare ( ClinicalTrials.gov Identifier: NCT02969681 , Tabel​Tabelul 3,3, statutul de recrutare neclar). În legătură cu aceasta, un alt studiu chinezesc de fază III evaluează în prezent această combinație în mod specific la pacienții cu cancer colorectal metastatic peritoneal cu expresie ridicată a GLUT3 [ 131 ] (Tabel​(Tabelul 33).

Din punct de vedere practic, experiențele din studiile clinice și rapoartele de caz au arătat că, deși evenimentele adverse sunt rare, câteva aspecte ar trebui luate în considerare înainte de administrarea dozelor mari de IVC. În timp ce unele efecte secundare, cum ar fi scăderea nivelurilor de potasiu (hipokaliemie) de către VitC, pot fi atenuate prin suplimentarea formulei, anumite condiții trebuie monitorizate îndeaproape și pot fi contraindicative pentru tratamentul IVC. De exemplu, la pacienții cu insuficiență renală, IVC cu doze mari poate duce la formarea de pietre la rinichi sau nefropatie acută cu oxalat [ 65 , 264 ], în timp ce deficitul de glucoză-6-fosfat dehidrogenază (G6PD) a fost asociat cu cazuri de anemie hemolitică. [ 66 , 265] după doze mari de IVC, ceea ce sugerează că ambele afecțiuni trebuie testate înainte de administrarea unei doze mari de IVC.

În ceea ce privește regimul optim de administrare a IVC, dovezile prezentate în această revizuire sugerează că 1) efectele anticancer pot fi obținute numai atunci când VitC este administrat intravenos, 2) doza de IVC trebuie să fie suficient de mare pentru a genera concentrații milimolare de VitC în plasma [ 12 , 13 ]. Dozele eficiente recomandate variază de la 1,5 g/kg [ 12 , 151 ] la 1,9–2,2 g/kg [ 13 ] în studiile de monoterapie IVC, în timp ce terapiile combinate cu IVC au indicat 75 g [ 110 , 155 ] la 87,5 g [ 16 , 129 ].] doza întregului corp să fie suficientă. În plus, 3) aceste doze de IVC trebuie administrate de cel puțin două ori pe săptămână. Aproape toate studiile clinice care prezintă sugestii de eficacitate și alte rezultate clinice favorabile, au fost administrate IVC de 2-3 ori pe săptămână, timp de cel puțin 8 săptămâni [ 63 , 82 , 153 , 156 , 157 ].

În concluzie, se acumulează un număr mare de dovezi care sugerează că VitC, atunci când este administrat intravenos și în doze mari, are proprietăți puternice citotoxice selective împotriva cancerului, sensibilizante la terapia cancerului și reducând toxicitatea.

Prin urmare, VitC în doze mari are potențialul de a extinde gama terapeutică de radio-, chimio- și terapii țintite, precum și eficacitatea acestora. În plus, o mare varietate de pacienți cu cancer pot beneficia de sfera terapeutică extinsă a inhibitorilor punctelor de control imun prin doze mari de VitC. În ciuda acestui fapt, acumularea scăzută rămâne să împiedice examinarea clinică ulterioară, cel mai adesea deoarece combinația de medicamente în cauză nu mai este standard de îngrijire în timp ce studiul este în desfășurare. Important este că acesta este cazul, chiar dacă evaluarea acestor combinații poate fi încă foarte relevantă din punct de vedere clinic. Din fericire, studiile clinice viitoare care combină doze mari de VitC cu imunoterapia ar putea să nu se confrunte cu această problemă, având în vedere interesul ridicat actual pentru această modalitate de tratament și necesitatea depășirii limitărilor actuale.

Având în vedere modul în care implementarea unei doze mari de VitC poate fi o descoperire în tratamentul pacienților cu cancer cu prognostic prost și cu puține opțiuni de tratament disponibile, este corect să concluzionăm că o examinare clinică ulterioară a acestei modalități de tratament promițătoare și netoxice a cancerului nu este doar garantat, dar este de fapt foarte necesar.

Mergi la:

Mulțumiri

Această lucrare a fost susținută de un grant de proiect de la Societatea Olandeză de Cancer (# 10212) către CRJ

Mergi la:

Abrevieri

3-PO3-(3-piridinil)-1-(4-piridinil)-2-propen-1-onă
5-FU5-fluorouracil
AGSLinia celulară de adenocarcinom gastric
AMLLeucemie mieloidă acută
APCCelula prezentatoare de antigen
ATOTrioxid de arsen
AUFAuranofin
BLADCancerul vezicii urinare
BRCancer mamar
BSCCea mai bună îngrijire de susținere
CLLLeucemie limfocitară cronică
CRCCancer colorectal
CSC-uriCelulele stem canceroase
CmaxConcentrația serică maximă atinsă
DHAAcid dehidroascorbic
DLTToxicități limitatoare de doză
DoxDoxiciclina
d-TPPderivat de TPP dodecil-TPP
EMTTranziție de la epiteliu la mezenchimal
EPIEpitelială
ESI-FT ICR MSElectrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
GBGlioblastom
GBMGlioblastom multiform
GCCancer gastric
BijuterieGemcitabină
HCCCarcinom hepatocelular
HNCCancer la cap și gât
ICIInhibitori ai punctelor de control imun
IR/RTIradiere/radioterapie
IVCVitC intravenos în doze mari
JQ1Thieno-triazolo-1,4-diazepină
LC-MS/MSCromatografie lichidă – spectrometrie de masă
LEUleucemie
BUZEPiscina de fier labil
PLAMÂNULCancer de plamani
LYMLimfom
MALDI-TOF MSDesorbție laser asistată de matrice – timpul de ionizare al spectrometriei de masă de zbor
mCRCCancer colorectal metastatic
mEHTElectrohipertermie modulată
MELMelanomul
MESMezenchimal
MMMielom multiplu
MMRReparație nepotrivire
MoAMecanisme de acțiune
MTDDoza maximă tolerată
NBNeuroblastom
NSCLCCancer pulmonar non-celule mici
OCVitC administrat oral
ORALCancer bucal
ORRRata de răspuns obiectiv
OSSupraviețuirea generală
OVCCancer ovarian
OxaOxaplatină
PCCancer de prostată
PDACAdenocarcinom ductal pancreatic
PFSSupraviețuire fără progresie
QoLCalitatea vieții
RCCCarcinom cu celule renale
RTTerapie cu radiatii
SARSarcom
SILACEtichetarea izotopilor STABIL prin/cu aminoacizi în cultura celulară
TETZece unsprezece enzimă de translocare
TETATrietilentetramină
TMZTemozolomidă
URICancerele urinare
VitCVitamina C

Mergi la:

Contribuții ale autorilor

FB, AVM și LC au efectuat căutări în literatură. Cifrele au fost create de FB și AVM Toți autorii au scris, citit și aprobat manuscrisul final.

Mergi la:

Finanțarea

Nu se aplică.

Mergi la:

Disponibilitatea datelor și materialelor

Nu se aplică.

Mergi la:

Declarații

Aprobarea etică și acordul de participare

Nu se aplică.Consimțământ pentru publicare

Nu se aplică.Interese concurente

Autorii declară că nu au interese concurente.

Mergi la:

Note de subsol

Nota editorului

Springer Nature rămâne neutră în ceea ce privește revendicările jurisdicționale în hărțile publicate și afilierile instituționale.

Franziska Böttger și Andrea Vallés-Martí au contribuit în mod egal la această lucrare.

Mergi la:

Referințe

1. 

Padayatty S, Levine M. Vitamina C: cunoscutul și necunoscutul și bucăți de aur. Dis. orală. 2016; 22 (6):463–493. doi: 10.1111/odi.12446. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]2. 

Ngo B, Van Riper JM, Cantley LC, Yun J. Targeting cancer vulnerabilities with high-doze vitamin C. Nat Rev Cancer. 2019; 19 (5):271–282. doi: 10.1038/s41568-019-0135-7. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]3. 

Lee Chong T, Ahearn EL, Cimmino L. Reprogramarea epigenomului cu vitamina C. Front Cell Dev Biol. 2019; 7 :128. doi: 10.3389/fcell.2019.00128. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]4. 

Fletcher SC, Coleman ML. Oxigenaze umane dependente de 2-oxoglutarat: senzori de nutrienți, respondenți la stres și mediatori ai bolii. Biochem Soc Trans. 2020; 48 (5):1843–1858. doi: 10.1042/BST20190333. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]5. 

Ang A, Pullar JM, Currie MJ, Vissers MCM. Vitamina C și celulele imune funcționează în inflamație și cancer. Biochem Soc Trans. 2018; 46 (5):1147–1159. doi: 10.1042/BST20180169. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]6. 

Cameron E, Campbell A. Tratamentul ortomolecular al cancerului II. Studiu clinic cu suplimente de acid ascorbic în doze mari în cancerul uman avansat. Chem Biol Interact. 1974; 9 (4):285–315. doi: 10.1016/0009-2797(74)90019-2. [ PubMed ] [ CrossRef ] [ Google Scholar ]7. 

Cameron E, Pauling L. Ascorbat suplimentar în tratamentul de susținere al cancerului: prelungirea timpilor de supraviețuire în cancerul uman terminal. Proc Natl Acad Sci. 1976; 73 (10):3685–3689. doi: 10.1073/pnas.73.10.3685. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]8. 

Cameron E, Pauling L. Ascorbat suplimentar în tratamentul de susținere al cancerului: reevaluarea prelungirii timpilor de supraviețuire în cancerul uman terminal. Proc Natl Acad Sci. 1978; 75 (9):4538–4542. doi: 10.1073/pnas.75.9.4538. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]9. 

Creagan ET, Moertel CG, O’Fallon JR, Schutt AJ, O’Connell MJ, Rubin J, et al. Eșecul terapiei cu doze mari de vitamina C (acid ascorbic) de a beneficia de pacienții cu cancer avansat. N Engl J Med. 1979; 301 (13):687–690. doi: 10.1056/NEJM197909273011303. [ PubMed ] [ CrossRef ] [ Google Scholar ]10. 

Moertel CG, Fleming TR, Creagan ET, Rubin J, O’Connell MJ, Ames MM. Doze mari de vitamina C față de placebo în tratamentul pacienților cu cancer avansat care nu au avut nicio chimioterapie anterioară. N Engl J Med. 1985; 312 (3):137–141. doi: 10.1056/NEJM198501173120301. [ PubMed ] [ CrossRef ] [ Google Scholar ]11. 

Padayatty SJ, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A, et al. Farmacocinetica vitaminei C: implicații pentru utilizarea orală și intravenoasă. Ann Intern Med. 2004; 140 (7): 533. doi: 10.7326/0003-4819-140-7-200404060-00010. [ PubMed ] [ CrossRef ] [ Google Scholar ]12. 

Hoffer LJ, Levine M, Assouline S, Melnychuk D, Padayatty SJ, Rosadiuk K și colab. Studiu clinic de fază I cu acid ascorbic iv în afecțiunile maligne avansate. Ann Oncol. 2008; 19 (11):1969–1974. doi: 10.1093/annonc/mdn377. [ PubMed ] [ CrossRef ] [ Google Scholar ]13. 

Stephenson CM, Levin RD, Spector T, Lis CG. Studiu clinic de fază I pentru a evalua siguranța, tolerabilitatea și farmacocinetica acidului ascorbic intravenos în doze mari la pacienții cu cancer avansat. Cancer Chemother Pharmacol. 2013; 72 (1):139–146. doi: 10.1007/s00280-013-2179-9. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]14. 

Polireddy K, Dong R, Reed G, Yu J, Chen P, Williamson S și colab. Ascorbatul parenteral în doză mare a inhibat creșterea și metastaza cancerului pancreatic: mecanisme și un studiu de fază I/IIa. Sci Rep. 2017; 7 (1): 17188. doi: 10.1038/s41598-017-17568-8. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]15. 

Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC și colab. Dozele farmacologice de ascorbat acționează ca un prooxidant și scad creșterea xenogrefelor tumorale agresive la șoareci. Proc Natl Acad Sci. 2008; 105 (32):11105–11109. doi: 10.1073/pnas.0804226105. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]16. 

Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, et al. Perturbarea mediată de O 2 ·- și H 2 O 2 a metabolismului Fe determină susceptibilitatea diferențială a celulelor canceroase NSCLC și GBM la ascorbat farmacologic. Celula canceroasă. 2017; 31 (4):487–500.e8. doi: 10.1016/j.ccell.2017.02.018. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]17. 

Takahashi H, Mizuno H, Yanagisawa A. Vitamina C intravenoasă în doze mari îmbunătățește calitatea vieții la pacienții cu cancer. Universul Pers Med. 2012; 1 (1):49–53. doi: 10.1016/j.pmu.2012.05.008. [ CrossRef ] [ Google Scholar ]18. 

Vollbracht C, Schneider B, Leendert V, Weiss G, Auerbach L, Beuth J. Administrarea intravenoasă a vitaminei C îmbunătățește calitatea vieții la pacienții cu cancer de sân în timpul chimio-/radioterapiei și îngrijirii ulterioare: rezultatele unui studiu de cohortă epidemiologic retrospectiv, multicentric în Germania. In Vivo. 2011; 25 (6):983–990. [ PubMed ] [ Google Scholar ]19. 

Yeom CH, Jung GC, Song KJ. Modificări ale calității vieții pacienților cu cancer în stadiu terminal după administrarea de doze mari de vitamina C. J Korean Med Sci. 2007; 22 (1):7. doi: 10.3346/jkms.2007.22.1.7. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]20. 

Agathocleous M, Meacham CE, Burgess RJ, Piskounova E, Zhao Z, Crane GM și colab. Ascorbatul reglează funcția celulelor stem hematopoietice și leuceemogeneza. Natură. 2017; 549 (7673):476–481. doi: 10.1038/nature23876. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]21. 

Bonilla-Porras AR, Jimenez-Del-Rio M, Velez-Pardo C. Vitamina K3 și vitamina C singure sau în combinație au indus apoptoza în celulele leucemice printr-un mecanism similar de semnalizare a stresului oxidativ. Cancer Cell Int. 2011; 11 (1):19. doi: 10.1186/1475-2867-11-19. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]22. 

Cimmino L, Dolgalev I, Wang Y, Yoshimi A, Martin GH, Wang J și colab. Restaurarea blocurilor funcționale TET2 auto-reînnoirea aberantă și progresia leucemiei. Celulă. 2017; 170 (6):1079–1095.e20. doi: 10.1016/j.cell.2017.07.032. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]23. 

Iamsawat S, Tian L, Daenthanasanmak A, Wu Y, Nguyen HD, Bastian D și colab. Vitamina C stabilizează CD81 iTreg și le sporește potențialul terapeutic în controlul GVHD murin și recidiva leucemiei. Sânge Adv. 2019; 3 (24):4187–4201. doi: 10.1182/bloodadvances.2019000531. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]24. 

Mingay M, Chaturvedi A, Bilenky M, Cao Q, Jackson L, Hui T și colab. Remodelarea epigenomică indusă de vitamina C în leucemia mieloidă acută mutantă IDH1. leucemie. 2018; 32 (1):11–20. doi: 10.1038/leu.2017.171. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]25. 

Aguilera O, Muñoz-Sagastibelza M, Torrejón B, Borrero-Palacios A, del Puerto-Nevado L, Martínez-Useros J, et al. Vitamina C decuplează comutatorul metabolic Warburg în cancerul de colon mutant KRAS. Oncotarget. 2016; 7 (30):47954–47965. doi: 10.18632/oncotarget.10087. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]26. 

Brandt KE, Falls KC, Schoenfeld JD, Rodman SN, Gu Z, Zhan F și colab. Creșterea fierului intracelular cu ajutorul zaharozei de fier crește toxicitatea ascorbatului farmacologic în celulele canceroase de colon. Redox Biol. 2018; 14 (iulie 2017): 82–87. doi: 10.1016/j.redox.2017.08.017. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]27. 

Cenigaonandia-Campillo A, Serna-Blasco R, Gómez-Ocabo L, Solanes-Casado S, Baños-Herraiz N, Del Puerto-Nevado L, et al. Vitamina C activează piruvat dehidrogenaza (PDH) care vizează ciclul acidului tricarboxilic mitocondrial (TCA) în cancerul de colon hipoxic mutant KRAS. Teranostice. 2021; 11 (8):3595–3606. doi: 10.7150/thno.51265. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]28. 

Mamede AC, Pires AS, Abrantes AM, Tavares SD, Gonçalves AC, Casalta-Lopes JE, et al. Citotoxicitatea acidului ascorbic într-o linie celulară de adenocarcinom colorectal uman (WiDr): studii in vitro și in vivo. Nutr Cancer. 2012; 64 (7):1049–1057. doi: 10.1080/01635581.2012.713539. [ PubMed ] [ CrossRef ] [ Google Scholar ]29. 

Nakanishi K, Hiramoto K, Ooi K. Vitamina C în doze mari își exercită efectele anticancerigene într-un model Xenogrefă de cancer de colon prin suprimarea angiogenezei. Biol Pharm Bull. 2021; 44 (6):884–887. doi: 10.1248/bpb.b21-00089. [ PubMed ] [ CrossRef ] [ Google Scholar ]30. 

Pires AS, Marques CR, Encarnação JC, Abrantes AM, Mamede AC, Laranjo M și colab. Acid ascorbic și cancer de colon: un stimul oxidativ al morții celulare în funcție de profilul celular. Eur J Cell Biol. 2016; 95 (6–7):208–218. doi: 10.1016/j.ejcb.2016.04.001. [ PubMed ] [ CrossRef ] [ Google Scholar ]31. 

Wang G, Yin T, Wang Y. Evaluarea in vitro și in vivo a vitaminei C în doze mari împotriva tumorilor murine. Exp Ther Med. 2016; 12 (5):3058–3062. doi: 10.3892/etm.2016.3707. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]32. 

Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, et al. Vitamina C ucide selectiv celulele mutante de cancer colorectal KRAS și BRAF prin țintirea GAPDH. Știință (80- ) 2015; 350 (6266):1391–1396. doi: 10.1126/science.aaa5004. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]33. 

Nakanishi K, Hiramoto K, Sato EF, Ooi K. Administrarea în doze mari de vitamina C inhibă invazia și proliferarea celulelor melanomului la ovarul de șoarece. Biol Pharm Bull. 2021; 44 (1):75–81. doi: 10.1248/bpb.b20-00637. [ PubMed ] [ CrossRef ] [ Google Scholar ]34. 

Chen XY, Chen Y, Qu CJ, Pan ZH, Qin Y, Zhang X și colab. Vitamina C induce apoptoza celulelor melanomului uman A375 prin căile mitocondriale mediate de Bax și Bcl-2. Oncol Lett. 2019; 18 (4):3880–3886. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]35. 

Kang JS, Cho D, Kim YI, Hahm E, Yang Y, Kim D și colab. Acidul L-ascorbic (vitamina C) induce apoptoza celulelor melanomului murin B16 printr-o cale independentă de caspază-8. Cancer Immunol Immunother. 2003; 52 (11):693–698. doi: 10.1007/s00262-003-0407-6. [ PubMed ] [ CrossRef ] [ Google Scholar ]36. 

Mustafi S, Sant DW, Liu ZJ, Wang G. Ascorbatul induce apoptoza în celulele melanomului prin suprimarea expresiei Clusterinului. Sci Rep. 2017; 7 (1): 3671. doi: 10.1038/s41598-017-03893-5. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]37. 

Serrano OK, Parrow NL, Violet PC, Yang J, Zornjak J, Basseville A, et al. Efectul antitumoral al ascorbatului farmacologic în modelul de melanom murin B16. Free Radic Biol Med. 2015; 87 :193–203. doi: 10.1016/j.freeradbiomed.2015.06.032. [ PubMed ] [ CrossRef ] [ Google Scholar ]38. 

Du J, Martin SM, Levine M, Wagner BA, Buettner GR, Wang S, et al. Mecanisme de citotoxicitate indusă de ascorbat în cancerul pancreatic. Clin Cancer Res. 2010; 16 (2):509–520. doi: 10.1158/1078-0432.CCR-09-1713. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]39. 

Pollard HB, Levine MA, Eidelman O, Pollard M. Acidul ascorbic farmacologic suprimă creșterea tumorală singenică și metastazele în cancerul de prostată refractar la hormoni. In Vivo. 2010; 24 (3):249–255. [ PubMed ] [ Google Scholar ]40. 

Li Z, He P, Luo G, Shi X, Yuan G, Zhang B și colab. Creșterea pH-ului micromediului tumoral îmbunătățește efectul citotoxic al acidului ascorbic farmacologic în celulele cancerului de prostată rezistente la castrare. Front Pharmacol. 2020; 11 :570939. doi: 10.3389/fphar.2020.570939. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]41. 

Chen P, Yu J, Chalmers B, Drisko J, Yang J, Li B și colab. Ascorbatul farmacologic induce citotoxicitate în celulele cancerului de prostată prin epuizarea ATP și inducerea autofagiei. Medicamente anti-cancer. 2012; 23 (4):437–444. doi: 10.1097/CAD.0b013e32834fd01f. [ PubMed ] [ CrossRef ] [ Google Scholar ]42. 

Ramezankhani B, Taha MF, Javeri A. Vitamina C contracarează reprogramarea indusă de miR-302/367 a celulelor canceroase de sân umane și le restabilește capacitatea invazivă și proliferativă. J Cell Physiol. 2019; 234 (3):2672–2682. doi: 10.1002/jcp.27081. [ PubMed ] [ CrossRef ] [ Google Scholar ]43. 

Xu Y, Guo X, Wang G, Zhou C. Vitamina C inhibă metastaza tumorilor peritoneale prin prevenirea formării sferoidelor în modelul de cancer peritoneal epitelial murin ID8. Front Pharmacol. 2020; 11 :645. doi: 10.3389/fphar.2020.00645. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]44. 

Gregoraszczuk EL, Zajda K, Tekla J, Respekta N, Zdybał P, Such A. Suplimentarea cu vitamina C nu a avut efecte secundare în non-cancer, dar a avut proprietăți anticanceroase în celulele canceroase ovariane. Int J Vitam Nutr Res. 2020; 3 :1–11. [ PubMed ] [ Google Scholar ]45. 

Lv H, Wang C, Fang T, Li T, Lv G, Han Q și colab. Vitamina C ucide de preferință celulele stem canceroase din carcinomul hepatocelular prin SVCT-2. npj Precis Oncol. 2018; 2 (1):1. doi: 10.1038/s41698-017-0044-8. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]46. 

Alyoussef A, Al-Gayyar MMH. Activitatea citotoxică și hepatoprotectoare parțială a ascorbatului de sodiu împotriva carcinomului hepatocelular prin inhibarea sulfatazei-2 in vivo și in vitro. Biomed Pharmacother. 2018; 103 :362–372. doi: 10.1016/j.biopha.2018.04.060. [ PubMed ] [ CrossRef ] [ Google Scholar ]47. 

Volta V, Ranzato E, Martinotti S, Gallo S, Russo MV, Mutti L, et al. Demonstrarea preclinica a combinației de nutrienți activi sinergie/medicament (ȘI) ca tratament potențial pentru mezoteliom pleural malign. McCormick DL, editor. Plus unu. 2013; 8 (3):e58051. doi: 10.1371/journal.pone.0058051. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]48. 

Ranzato E, Biffo S, Burlando B. Selective Ascorbate toxicity in malign mesotheliom. Am J Respir Cell Mol Biol. 2011; 44 (1):108–117. doi: 10.1165/rcmb.2009-0340OC. [ PubMed ] [ CrossRef ] [ Google Scholar ]49. 

Su X, Shen Z, Yang Q, Sui F, Pu J, Ma J și colab. Vitamina C ucide celulele canceroase tiroidiene prin inhibarea dependentă de ROS a căilor MAPK/ERK și PI3K/AKT prin mecanisme distincte. Teranostice. 2019; 9 (15):4461–4473. doi: 10.7150/thno.35219. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]50. 

Tronci L, Serreli G, Piras C, Frau DV, Dettori T, Deiana M, et al. Citotoxicitatea vitaminei C și efectele sale în homeostazia redox și metabolismul energetic în liniile celulare de carcinom tiroidian papilar. Antioxidanți. 2021; 10 (5): 809. doi: 10.3390/antiox10050809. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]51. 

Zhou J, Chen C, Chen X, Fei Y, Jiang L, Wang G. Vitamina C promovează apoptoza și stoparea ciclului celular în carcinomul bucal cu celule scuamoase. Front Oncol. 2020; 10 :976. doi: 10.3389/fonc.2020.00976. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]52. 

Deubzer B, Mayer F, Kuçi Z, Niewisch M, Merkel G, Handgretinger R, et al. Citotoxicitatea mediată de H 2 O 2 a concentrațiilor farmacologice de ascorbat la celulele neuroblastomului: rolul potențial al lactatului și feritinei. Cell Physiol Biochim. 2010; 25 (6):767–774. doi: 10.1159/000315098. [ PubMed ] [ CrossRef ] [ Google Scholar ]53. 

Castro M, Carson G, McConnell M, Herst P. Doza mare de ascorbat provoacă atât stres genotoxic, cât și metabolic în celulele Gliom. Antioxidanți. 2017; 6 (3):58. doi: 10.3390/antiox6030058. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]54. 

Gokturk D, Kelebek H, Ceylan S, Yilmaz DM. Efectul acidului ascorbic asupra citotoxicității mediate de Etoposide și Temozolomid în cultura de celule de glioblastom: un studiu molecular. Turk Neurochirurgie. 2018; 28 (1):13–18. [ PubMed ] [ Google Scholar ]55. 

Campbell EJ, Dachs GU. Limitările actuale ale modelelor murine în oncologie pentru cercetarea Ascorbatului. Front Oncol. 2014; 4 :282. doi: 10.3389/fonc.2014.00282. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]56. 

Campbell EJ, Vissers MCM, Wohlrab C, Hicks KO, Strother RM, Bozonet SM, et al. Proprietăți farmacocinetice și anti-cancer ale ascorbatului în doze mari în tumorile solide ale șoarecilor dependenți de ascorbat. Free Radic Biol Med. 2016; 99 :451–462. doi: 10.1016/j.freeradbiomed.2016.08.027. [ PubMed ] [ CrossRef ] [ Google Scholar ]57. 

Chen P, Stone J, Sullivan G, Drisko JA, Chen Q. Efectul anti-cancer al ascorbatului farmacologic și interacțiunea acestuia cu glutationul parenteral suplimentar în modelele de cancer preclinice. Free Radic Biol Med. 2011; 51 (3):681–687. doi: 10.1016/j.freeradbiomed.2011.05.031. [ PubMed ] [ CrossRef ] [ Google Scholar ]58. 

Taper HS, Jamison JM, Gilloteaux J, Summers JL, Calderon PB. Inhibarea dezvoltării metastazelor prin combinația alimentară de vitamina C:K 3. Life Sci. 2004; 75 (8):955–967. doi: 10.1016/j.lfs.2004.02.011. [ PubMed ] [ CrossRef ] [ Google Scholar ]59. 

Chen MF, Yang CM, Su CM, Liao JW, Hu ML. Efectul inhibitor al vitaminei C în combinație cu vitamina K3 asupra creșterii tumorii și metastazei carcinomului pulmonar Lewis xenogrefat la șoarecii C57BL/6. Nutr Cancer. 2011; 63 (7):1036–1043. doi: 10.1080/01635581.2011.597537. [ PubMed ] [ CrossRef ] [ Google Scholar ]60. 

Zeng LH, Wang QM, Feng LY, Ke YD, Xu QZ, Wei AY și colab. Dozele mari de vitamina C suprimă invazia și metastaza celulelor canceroase de sân prin inhibarea tranziției epitelial-mezenchimatoase. Onco vizează acolo. 2019; 12 :7405–7413. doi: 10.2147/OTT.S222702. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]61. 

O’Leary BR, Alexander MS, Du J, Moose DL, Henry MD, Cullen JJ. Ascorbatul farmacologic inhibă metastazele cancerului pancreatic printr-un mecanism mediat de peroxid. Sci Rep. 2020; 10 (1): 17649. doi: 10.1038/s41598-020-74806-2. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]62. 

Yeom CH, Lee G, Park JH, Yu J, Park S, Yi SY, et al. Administrarea în doze mari de acid ascorbic inhibă creșterea tumorii la șoarecii BALB/C implantați cu celule canceroase sarcom 180 prin restricția angiogenezei. J Transl Med. 2009; 7 (1):1–9. doi: 10.1186/1479-5876-7-70. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]63. 

Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q. High-Dose Parenteral Ascorbat Enhanced Chemosensitivity of Ovarian Cancer and Reduced Toxicity of Chemotherapy. Sci Transl Med. 2014; 6 (222): 222ra18. doi: 10.1126/scitranslmed.3007154. [ PubMed ] [ CrossRef ] [ Google Scholar ]64. 

Su X, Li P, Han B, Jia H, Liang Q, Wang H și colab. Vitamina C sensibilizează cancerul tiroidian BRAFV600E la PLX4032 prin inhibarea activării feedback-ului semnalului MAPK/ERK de către PLX4032. J Exp Clin Cancer Res. 2021; 40 (1):34. doi: 10.1186/s13046-021-01831-y. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]65. 

Riordan HD, Casciari JJ, González MJ, Riordan NH, Miranda-Massari JR, Taylor P, et al. Un studiu clinic pilot al ascorbatului intravenos continuu la pacienții cu cancer terminal. PR Health Sci J. 2005; 24 (4):269–276. [ PubMed ] [ Google Scholar ]66. 

Nielsen TK, Højgaard M, Andersen JT, Jørgensen NR, Zerahn B, Kristensen B și colab. Perfuzie săptămânală de acid ascorbic la pacienții cu cancer de prostată rezistenți la castrare: un studiu de fază II cu un singur braț. Transl Androl Urol. 2017; 6 (3):517–528. doi: 10.21037/tau.2017.04.42. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]67. 

Drisko JA, Chapman J, Hunter VJ. Utilizarea antioxidanților cu chimioterapie de primă linie în două cazuri de cancer ovarian. J Am Coll Nutr. 2003; 22 (2):118–123. doi: 10.1080/07315724.2003.10719284. [ PubMed ] [ CrossRef ] [ Google Scholar ]68. 

Drisko JA, Serrano OK, Spruce LR, Chen Q, Levine M. Treatment of pancreatic cancer with intravenous vitamin C. Anti-Cancer Drugs. 2018; 29 (4):373–379. doi: 10.1097/CAD.0000000000000603. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]69. 

González MJ, Berdiel MJ, Miranda-Massari JR, López D, Duconge J, Rodriguez JL și colab. Doze mari de vitamina c intravenoasă și cancer pancreatic metastatic: două cazuri. Integr Cancer Sci Ther. 2016; 3 (6):1–2. [ Google Scholar ]70. 

Padayatty SJ. Vitamina C administrată intravenos ca terapie împotriva cancerului: trei cazuri. Can Med Assoc J. 2006; 174 (7):937–942. doi: 10.1503/cmaj.050346. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]71. 

Riordan HD, Riordan NH, Jackson JA, Casciari JJ, Hunninghake R, González MJ și colab. Vitamina C intravenoasă ca agent de chimioterapie: un raport asupra cazurilor clinice. PR Health Sci J. 2004; 23 (2):115–118. [ PubMed ] [ Google Scholar ]72. 

Seo MS, Kim JK, Shim JY. Dozele mari de vitamina C promovează regresia metastazelor pulmonare multiple care provin din carcinomul hepatocelular. Yonsei Med J. 2015; 56 (5):1449. doi: 10.3349/ymj.2015.56.5.1449. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]73. Identificator 

ClinicalTrials.gov : NCT03146962. Perfuzie intravenoasă în doză mare de vitamina C la pacienții cu tumori maligne ale tumorilor solide rezecabile sau metastatice.74. Identificator 

ClinicalTrials.gov : NCT04046094. Vitamina C intravenoasă (IV) cu chimioterapie pentru pacienții cu cancer de vezică urinară neeligibili cu cisplatină.75. Identificator 

ClinicalTrials.gov : NCT03682029. Epigenetica, vitamina C și formarea anormală de celule sanguine – Vitamina C la pacienții cu afecțiuni mieloide cu risc scăzut (EVITA).76. Identificator 

ClinicalTrials.gov : NCT03613727. Utilizarea terapeutică a vitaminei C intravenoase la primitorii de transplant de celule stem alogene.77. Identificator 

ClinicalTrials.gov : NCT03964688. Efectul vitaminei C în transplanturile autologe de celule stem (VICAST).78. 

Mastrangelo D, Massai L, Lo Coco F, Noguera NI, Borgia L, Fioritoni G, et al. Efectele citotoxice ale concentrațiilor mari de ascorbat de sodiu asupra liniilor celulare mieloide umane. Ann Hematol. 2015; 94 (11):1807–1816. doi: 10.1007/s00277-015-2464-2. [ PubMed ] [ CrossRef ] [ Google Scholar ]79. 

Carr AC, McCall C. Rolul vitaminei C în tratamentul durerii: noi perspective. J Transl Med. 2017; 15 (1):77. doi: 10.1186/s12967-017-1179-7. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]80. 

Günes-Bayir A, Kiziltan HS. Aplicarea paliativă a vitaminei C la pacienții cu metastaze osoase rezistente la radioterapie: un studiu retrospectiv. Nutr Cancer. 2015; 67 (6):921–925. doi: 10.1080/01635581.2015.1055366. [ PubMed ] [ CrossRef ] [ Google Scholar ]81. 

Klimant E, Wright H, Rubin D, Seely D, Markman M. Vitamina C intravenoasă în îngrijirea de susținere a pacienților cu cancer: o revizuire și o abordare rațională. Curr Oncol. 2018; 25 (2):139–148. doi: 10.3747/co.25.3790. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]82. 

Welsh JL, Wagner BA, van’t Erve TJ, Zehr PS, Berg DJ, Halfdanarson TR, et al. Ascorbat farmacologic cu gemcitabină pentru controlul cancerului pancreatic metastatic și ganglionar pozitiv (PACMAN): rezultate dintr-un studiu clinic de fază I. Cancer Chemother Pharmacol. 2013; 71 (3):765–775. doi: 10.1007/s00280-013-2070-8. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]83. 

Hoffer LJ, Robitaille L, Zakarian R, Melnychuk D, Kavan P, Agulnik J, et al. Vitamina C intravenoasă în doză mare combinată cu chimioterapie citotoxică la pacienții cu cancer avansat: un studiu clinic de fază I-II. Hills RK, editor. Plus unu. 2015; 10 (4):e0120228. doi: 10.1371/journal.pone.0120228. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]84. 

Carr AC, Spencer E, Das A, Meijer N, Lauren C, Macpherson S, et al. Pacienții supuși chimioterapiei mieloablative și transplant de celule stem hematopoietice prezintă un statut de vitamina C epuizat în asociere cu neutropenia febrilă. Nutrienți. 2020; 12 (6):1–9. doi: 10.3390/nu12061879. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]85. 

Mayland CR, Bennett MI, Allan K. Vitamina C deficiency in cancer patients. Palliat Med. 2005; 19 (1):17–20. doi: 10.1191/0269216305pm970oa. [ PubMed ] [ CrossRef ] [ Google Scholar ]86. 

Mansoor F, Kumar S, Rai P, Anees F, Kaur N, Devi A, et al. Impactul administrării intravenoase de vitamina C în reducerea severității simptomelor la pacienții cu cancer de sân în timpul tratamentului. Cureus. 2021; 13 (5):e14867. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]87. 

Dayer D, Tabandeh MR, Kazemi M. Efectul radiosensibilizant al concentrației farmacologice de acid ascorbic asupra celulelor canceroase pancreatice umane. Agenți anticancer Med Chem. 2020; 20 (16):1927–1932. doi: 10.2174/1871520620666200612144124. [ PubMed ] [ CrossRef ] [ Google Scholar ]88. 

Pires AS, Marques CR, Encarnação JC, Abrantes AM, Marques IA, Laranjo M și colab. Acidul ascorbic chemosensibilizează celulele cancerului colorectal și inhibă sinergic creșterea tumorii. Front Physiol. 2018; 9 :911. doi: 10.3389/fphys.2018.00911. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]89. 

O’Leary BR, Houwen FK, Johnson CL, Allen BG, Mezhir JJ, Berg DJ și colab. Ascorbat farmacologic ca adjuvant pentru îmbunătățirea răspunsurilor radio-chimioterapiei în adenocarcinomul gastric. Radiat Res. 2018; 189 (5):456. doi: 10.1667/RR14978.1. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]90. 

Luchtel RA, Bhagat T, Pradhan K, Jacobs WR, Levine M, Verma A, et al. Acidul ascorbic în doză mare face sinergie cu anti-PD1 într-un model de șoarece cu limfom. Proc Natl Acad Sci. 2020; 117 (3):1666–1677. doi: 10.1073/pnas.1908158117. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]91. 

Magrì A, Germano G, Lorenzato A, Lamba S, Chilà R, Montone M, et al. Dozele mari de vitamina C îmbunătățesc imunoterapia împotriva cancerului. Sci Transl Med. 2020; 12 (532):eaay8707. doi: 10.1126/scitranslmed.aay8707. [ PubMed ] [ CrossRef ] [ Google Scholar ]92. 

Tian W, Wang Z, Tang N, Li J, Liu Y, Chu WF și colab. Acidul ascorbic sensibilizează carcinomul colorectal la citotoxicitatea trioxidului de arsen prin promovarea apoptozei dependente de speciile reactive de oxigen și a piroptozei. Front Pharmacol. 2020; 21:11 . [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]93. 

Wu X, Park M, Sarbassova DA, Ying H, Lee MG, Bhattacharya R, et al. O acțiune dependentă de chiralitate a vitaminei C în suprimarea creșterii tumorii mutante din sarcomul de șobolan Kirsten prin combinația oxidativă: rațiunea terapeutică a cancerului. Int J Cancer. 2020; 146 (10):2822–2828. doi: 10.1002/ijc.32658. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]94. 

Noguera NI, Pelosi E, Angelini DF, Piredda ML, Guerrera G, Piras E, et al. Ascorbatul în doze mari și trioxidul de arsen ucid selectiv leucemia mieloidă acută și blaturile de leucemie acută promielocitară in vitro. Oncotarget. 2017; 8 (20):32550–32565. doi: 10.18632/oncotarget.15925. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]95. 

Biswas S, Zhao X, Mone AP, Mo X, Vargo M, Jarjoura D și colab. Trioxidul de arsen și acidul ascorbic demonstrează activitate promițătoare împotriva celulelor primare de LLC umane in vitro. Leuk Res. 2010; 34 (7):925–931. doi: 10.1016/j.leukres.2010.01.020. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]96. 

Vineetha RC, Hariharan S, Jaleel A, Chandran M, Nair RH. Acidul L-ascorbic și α-Tocoferol declanșează sinergic inducerea apoptozei efecte antileucemice ale trioxidului de arsen prin stresul oxidativ în celulele umane de leucemie promielocitară acută. Front Oncol. 2020; 10:65 . doi: 10.3389/fonc.2020.00065. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]97. 

Hatem E, Azzi S, El Banna N, He T, Heneman-Masurel A, Vernis L, et al. Auranofin/vitamina C: o combinație nouă de medicamente care vizează cancerul de sân triplu negativ. JNCI J Natl Cancer Inst. 2019; 111 (6):597–608. doi: 10.1093/jnci/djy149. [ PubMed ] [ CrossRef ] [ Google Scholar ]98. 

Gerecke C, Schumacher F, Edlich A, Wetzel A, Yealland G, Neubert LK, et al. Vitamina C promovează hidroximetilarea ADN-ului indusă de decitabină sau azacitidină și reactivarea ulterioară a supresoarelor tumorale CDKN1A cu tăcere epigenetic în celulele canceroase de colon. Oncotarget. 2018; 9 (67):32822–32840. doi: 10.18632/oncotarget.25999. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]99. 

Jung SA, Lee DH, Moon JH, Hong SW, Shin JS, Hwang IY și colab. Acidul L-ascorbic poate anula rezistența la cetuximab dependentă de SVCT-2 mediată de KRAS mutant în celulele canceroase de colon umane. Free Radic Biol Med. 2016; 95 :200–208. doi: 10.1016/j.freeradbiomed.2016.03.009. [ PubMed ] [ CrossRef ] [ Google Scholar ]100. 

Ghavami G, Sardari S. Efectul sinergic al vitaminei C cu Cisplatin pentru inhibarea proliferării celulelor canceroase gastrice. Iran Biomed J. 2020; 24 (2):119–127. doi: 10.29252/ibj.24.2.119. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]101. 

Leekha A, Gurjar BS, Tyagi A, Rizvi MA, Verma AK. Vitamina C în sinergie cu cisplatină induce moartea celulelor în celulele canceroase de col uterin prin modificarea ciclului redox și reglarea p53. J Cancer Res Clin Oncol. 2016; 142 (12):2503–2514. doi: 10.1007/s00432-016-2235-z. [ PubMed ] [ CrossRef ] [ Google Scholar ]102. 

Kleih M, Böpple K, Dong M, Gaißler A, Heine S, Olayioye MA și colab. Impactul direct al cisplatinei asupra mitocondriilor induce producția de ROS care dictează soarta celulelor canceroase ovariane. Moartea celulară Dis. 2019; 10 (11): 851. doi: 10.1038/s41419-019-2081-4. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]103. 

Wu TM, Liu ST, Chen SY, Chen GS, Wu CC, Huang SM. Mecanisme și aplicații ale efectului anti-cancer al acidului ascorbic farmacologic în celulele canceroase de col uterin. Front Oncol. 2020; 10 :1483. doi: 10.3389/fonc.2020.01483. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]104. 

Darwiche W, Gomila C, Ouled-Haddou H, Naudot M, Doualle C, Morel P, et al. Acidul ascorbic (vitamina C) sporește sinergic efectul terapeutic al terapiei țintite în leucemia limfocitară cronică. J Exp Clin Cancer Res. 2020; 39 (1): 228. doi: 10.1186/s13046-020-01738-0. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]105. 

Zhao H, Zhu H, Huang J, Zhu Y, Hong M, Zhu H și colab. Sinergia vitaminei C cu decitabina activează TET2 în celulele leucemice și îmbunătățește semnificativ supraviețuirea globală la pacienții vârstnici cu leucemie mieloidă acută. Leuk Res. 2018; 66 :1–7. doi: 10.1016/j.leukres.2017.12.009. [ PubMed ] [ CrossRef ] [ Google Scholar ]106. 

De Francesco EM, Bonuccelli G, Maggiolini M, Sotgia F, Lisanti MP. Vitamina C și doxiciclină: o terapie combinată letală sintetică care vizează flexibilitatea metabolică în celulele stem canceroase (CSC) Oncotarget. 2017; 8 (40):67269–67286. doi: 10.18632/oncotarget.18428. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]107. 

Fiorillo M, Tóth F, Sotgia F, Lisanti MP. Doxiciclină, azitromicină și vitamina C (DAV): o terapie combinată puternică pentru țintirea mitocondriilor și eradicarea celulelor stem canceroase (CSC) Aging (Albany NY) 2019; 11 (8):2202–2216. doi: 10.18632/aging.101905. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]108. 

Lee SJ, Jeong JH, Lee IH, Lee J, Jung JH, Park HY și colab. Efectul vitaminei C în doze mari combinate cu tratamentul anticancer asupra celulelor canceroase de sân. Anticancer Res. 2019; 39 (2):751–758. doi: 10.21873/anticanres.13172. [ PubMed ] [ CrossRef ] [ Google Scholar ]109. 

Lee KE, Hahm E, Bae S, Kang JS, Lee WJ. Efectele îmbunătățite de inhibiție a tumorii ale terapiei combinate cu gefitinib și acid L-ascorbic în celulele cancerului pulmonar fără celule mici. Oncol Lett. 2017; 14 (1):276–282. doi: 10.3892/ol.2017.6109. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]110. 

Alexander MS, Wilkes JG, Schroeder SR, Buettner GR, Wagner BA, Du J, et al. Ascorbatul farmacologic reduce toxicitatea tisulară normală indusă de radiații și crește radiosensibilizarea tumorii în cancerul pancreatic. Cancer Res. 2018; 78 (24):6838–6851. doi: 10.1158/0008-5472.CAN-18-1680. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]111. 

Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Bradley MD, Wagner BA, Buettner GR, et al. Metalele active redox și H2O2 mediază eficacitatea crescută a ascorbatului farmacologic în combinație cu gemcitabină sau radiații în modelele de sarcom preclinic. Redox Biol. 2018; 14 :417–422. doi: 10.1016/j.redox.2017.09.012. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]112. 

Lu YX, Wu QN, Chen D, Chen LZ, Wang ZX, Ren C și colab. Ascorbatul farmacologic suprimă creșterea celulelor canceroase gastrice cu supraexpresia GLUT1 și îmbunătățește eficacitatea Oxaliplatinei prin modularea redox. Teranostice. 2018; 8 (5):1312–1326. doi: 10.7150/thno.21745. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]113. 

Xia J, Xu H, Zhang X, Allamargot C, Coleman KL, Nessler R și colab. Celulele tumorale de mielom multiplu sunt ucise selectiv de acid ascorbic dozat farmacologic. EBioMedicine. 2017; 18 :41–49. doi: 10.1016/j.ebiom.2017.02.011. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]114. 

Di Tano M, Raucci F, Vernieri C, Caffa I, Buono R, Fanti M, et al. Efectul sinergic al dietei care imita postul și al vitaminei C împotriva cancerelor cu mutație KRAS. Nat Commun. 2020; 11 (1): 2332. doi: 10.1038/s41467-020-16243-3. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]115. 

Bharadwaj R, Sahu BP, Haloi J, Laloo D, Barooah P, Keppen C, et al. Abordare terapeutică combinatorie pentru tratamentul carcinomului bucal cu celule scuamoase. Artif Cells Nanomed Biotechnol. 2019; 47 (1):571–584. doi: 10.1080/21691401.2019.1573176. [ PubMed ] [ CrossRef ] [ Google Scholar ]116. 

Rouleau L, Antony AN, Bisetto S, Newberg A, Doria C, Levine M, et al. Efectele sinergice ale ascorbatului și sorafenibului în carcinomul hepatocelular: noi perspective asupra citotoxicității ascorbatului. Free Radic Biol Med. 2016; 95 :308–322. doi: 10.1016/j.freeradbiomed.2016.03.031. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]117. 

Zheng Z, Luo G, Shi X, Long Y, Shen W, Li Z și colab. Inhibitorul xc− sulfasalazina îmbunătățește efectul anti-cancer al vitaminei C farmacologice în celulele canceroase de prostată printr-un mecanism dependent de glutation. Cell Oncol. 2020; 43 (1):95–106. doi: 10.1007/s13402-019-00474-8. [ PubMed ] [ CrossRef ] [ Google Scholar ]118. 

Gong EY, Shin YJ, Hwang IY, Kim JH, Kim SM, Moon JH și colab. Tratamentul combinat cu vitamina C și sulindac induce sinergic apoptoza dependentă de p53 și ROS în celulele canceroase de colon umane. Toxicol Lett. 2016; 258 :126–133. doi: 10.1016/j.toxlet.2016.06.019. [ PubMed ] [ CrossRef ] [ Google Scholar ]119. 

Mustafi S, Camarena V, Volmar CH, Huff TC, Sant DW, Brothers SP, et al. Vitamina C sensibilizează melanomul la inhibitorii BET. Cancer Res. 2018; 78 (2):572–583. doi: 10.1158/0008-5472.CAN-17-2040. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]120. 

Sinha BK, van ‘t Erve TJ, Kumar A, Bortner CD, Motten AG, Mason RP. Îmbunătățirea sinergică a morții celulare induse de topotecan de către acid ascorbic în celulele tumorale MCF-7 ale sânului uman. Free Radic Biol Med. 2017; 113 :406–412. doi: 10.1016/j.freeradbiomed.2017.10.377. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]121. 

De Francesco EM, Ózsvári B, Sotgia F, Lisanti MP. Dodecyl-TPP vizează mitocondriile și eradicează puternic celulele stem canceroase (CSC): sinergie cu medicamentele aprobate de FDA și compușii naturali (vitamina C și berberina) Front Oncol. 2019; 7 :9. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]122. 

Wang L, Luo X, Li C, Huang Y, Xu P, Lloyd-Davies LH și colab. Trietilentetramina face sinergie cu acidul ascorbic farmacologic în toxicitatea selectivă mediată de peroxid de hidrogen asupra celulelor cancerului de sân. Oxidative Med Cell Longev. 2017; 2017 :1–13. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]123. 

Yang G, Yan Y, Ma Y, Yang Y. Vitamina C la concentrații mari induce citotoxicitate în melanomul malign, dar favorizează creșterea tumorii la concentrații scăzute. Mol Carcinog. 2017; 56 (8):1965–1976. doi: 10.1002/mc.22654. [ PubMed ] [ CrossRef ] [ Google Scholar ]124. 

Ivanova D, Zhelev Z, Lazarova D, Getsov P, Bakalova R, Aoki I. Vitaminele C și K3: un sistem redox puternic pentru sensibilizarea limfocitelor de leucemie la Everolimus și Barasertib. Anticancer Res. 2018; 38 (3):1407–1414. [ PubMed ] [ Google Scholar ]125. Identificator 

ClinicalTrial.gov : NCT00441207. Studiu al tratamentului cu vitamina C intravenos (IV) cu doze mari la pacienții cu tumori solide.126. 

Nielsen TK, Højgaard M, Andersen JT, Poulsen HE, Lykkesfeldt J, Mikines KJ. Eliminarea acidului ascorbic după perfuzie cu doze mari la pacienții cu cancer de prostată: o evaluare farmacocinetică. Basic Clin Pharmacol Toxicol. 2015; 116 (4):343–348. doi: 10.1111/bcpt.12323. [ PubMed ] [ CrossRef ] [ Google Scholar ]127. Identificator 

ClinicalTrials.gov : NCT01080352. Vitamina C ca medicament împotriva cancerului.128. 

ClinicalTrials.gov Identificator: NCT01050621. Studiu de chimioterapie plus vitamina C intravenoasă la pacienții cu cancer avansat pentru care chimioterapia singură este eficientă doar marginal.129. 

Allen BG, Bodeker KL, Smith MC, Monga V, Sandhu S, Hohl R și colab. Primul studiu clinic de fază I la om de ascorbat farmacologic combinat cu radiații și Temozolomidă pentru glioblastom nou diagnosticat. Clin Cancer Res. 2019; 25 (22):6590–6597. doi: 10.1158/1078-0432.CCR-19-0594. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]130. 

ClinicalTrials.gov Identificator: NCT01752491. Un studiu de fază I cu ascorbat în doză mare în glioblastomul multiform.131. 

ClinicalTrials.gov Identificator: NCT04516681. IV Acid ascorbic în cancerul colorectal metastatic peritoneal.132. 

ClinicalTrials.gov Identificator: NCT04033107. Vitamina C în doză mare combinată cu metformină în tratamentul tumorilor maligne.133. Identificator 

ClinicalTrial.gov : NCT02420314. Ascorbat farmacologic pentru cancerul pulmonar.134. 

ClinicalTrials.gov Identificator: NCT02905591. Un studiu de fază 2 care adaugă ascorbat la chimioterapie și radioterapie pentru NSCLC (XACT-LUNG).135. 

ClinicalTrials.gov Identificator: NCT03602235. Acid ascorbic în doză mare pentru tulburări ale celulelor plasmatice.136. 

ClinicalTrials.gov Identificator: NCT03418038. Acid ascorbic și chimioterapie combinată în tratarea pacienților cu limfom recidivat sau refractar.137. 

ClinicalTrials.gov Identificator: NCT02905578. Un studiu de fază 2 cu ascorbat în doze mari pentru cancerul pancreatic (PACMAN 2.1).138. 

ClinicalTrials.gov Identificator: NCT04150042. Un studiu despre Melphalan, BCNU, vitamina B12b, vitamina C și infuzie cu celule stem la persoanele cu cancer pancreatic avansat și mutații BRCA.139. 

ClinicalTrials.gov Identificator: NCT03410030. Test de acid ascorbic (AA) + nanoparticule Paclitaxel proteină legată + cisplatină + gemcitabină (AA NABPLAGEM) (AA NABPLAGEM).140. 

ClinicalTrials.gov Identificator: NCT02516670. Docetaxel cu sau fără acid ascorbic în tratarea pacienților cu cancer de prostată metastatic.141. 

ClinicalTrials.gov Identificator: NCT03334409. Clorhidrat de pazopanib cu sau fără acid ascorbic în tratarea pacienților cu cancer de rinichi care este metastatic sau care nu poate fi îndepărtat prin intervenție chirurgicală.142. 

ClinicalTrials.gov Identificator: NCT04634227. Gemcitabină Plus Ascorbat pentru Sarcom la adulți (pilot).143. 

ClinicalTrials.gov Identificator: NCT03508726. Ascorbat în doză mare cu radiații preoperatorii la pacienții cu sarcoame de țesut moale avansat local.144. 

ClinicalTrials.gov Identificator: NCT03799094. Vitamina C și inhibitorul tirozin kinazei la pacienții cu cancer pulmonar cu mutații ale receptorilor factorului de creștere epidermică.145. Identificator 

ClinicalTrial.gov : NCT00228319. Tratamentul cancerului ovarian nou diagnosticat cu antioxidanți.146. Identificator 

ClinicalTrial.gov : NCT01364805. Opțiune nouă de tratament pentru cancerul pancreatic.147. 

ClinicalTrial.gov Identificator: NCT01852890. Gemcitabină, ascorbat, radioterapie pentru cancerul pancreatic, faza I.148. 

Bruckner H, Hirschfeld A, Gurell D, Lee K. Impactul larg de siguranță al acidului ascorbic cu doze mari și chimioterapie de inducție pentru cancerul pancreatic cu risc ridicat. J Clin Oncol. 2017; 35 (15_suppl):e15711. doi: 10.1200/JCO.2017.35.15_suppl.e15711. [ CrossRef ] [ Google Scholar ]149. Identificator 

ClinicalTrial.gov : NCT01905150. Studiu Ph 2 cu Vitamina C și G-FLIP (Gemcitabină în doze mici, 5FU, Leucovorin, Irinotecan, Oxaliplatin) pentru cancerul pancreatic.150. Identificator 

ClinicalTrial.gov : NCT01049880. Un studiu de cercetare cu doze mari de vitamina C și chimioterapie pentru cancerul pancreatic metastatic.151. 

Wang F, He MM, Wang ZX, Li S, Jin Y, Ren C și colab. Studiul de fază I al acidului ascorbic în doze mari cu mFOLFOX6 sau FOLFIRI la pacienții cu cancer colorectal metastatic sau cancer gastric. BMC Cancer. 2019; 19 (1): 460. doi: 10.1186/s12885-019-5696-z. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]152. 

ClinicalTrials.gov Identificator: NCT02969681. Vitamina C intravenos cu chimioterapie în cancerul colorectal avansat (vitalitate).153. 

Monti DA, Mitchell E, Bazzan AJ, Littman S, Zabrecky G, Yeo CJ, et al. Evaluarea de fază I a acidului ascorbic intravenos în combinație cu gemcitabină și erlotinib la pacienții cu cancer pancreatic metastatic. Perez-Gracia JL, editor. Plus unu. 2012; 7 (1):e29794. doi: 10.1371/journal.pone.0029794. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]154. Identificator 

ClinicalTrial.gov : NCT00954525. Vitamina C intravenoasă în combinație cu chimioterapia standard pentru cancerul pancreatic.155. 

Kawada H, Sawanobori M, Tsuma-kaneko M, Wasada I, Miyamoto M, Murayama H, et al. Studiu clinic de fază I cu acid L-ascorbic intravenos în urma chimioterapiei de salvare pentru limfomul non-Hodgkin cu celule B recidivat – PubMed. Tokai J Exp Clin Med. 2014; 20 (39):111–115. [ PubMed ] [ Google Scholar ]156. 

Ou J, Zhu X, Lu Y, Zhao C, Zhang H, Wang X și colab. Siguranța și farmacocinetica sinergiei acidului ascorbic intravenos cu doze mari cu electrohipertermie modulată la pacienții chinezi cu cancer pulmonar fără celule mici în stadiul III-IV. Eur J Pharm Sci. 2017; 109 :412–418. doi: 10.1016/j.ejps.2017.08.011. [ PubMed ] [ CrossRef ] [ Google Scholar ]157. 

Ou J, Zhu X, Chen P, Du Y, Lu Y, Peng X și colab. Un studiu randomizat de fază II cu cea mai bună îngrijire de susținere cu sau fără hipertermie și vitamina C pentru cancerul pulmonar cu celule mici, avansat, pretratat, refractar. J Adv Res. 2020; 24 :175–182. doi: 10.1016/j.jare.2020.03.004. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]158. 

ClinicalTrial.gov Identificator: NCT02655913. Siguranța și eficacitatea perfuziei de vitamina C în combinație cu mEHT local pentru a trata cancerul pulmonar cu celule mici (VCONSCLC).159. 

Lorenzato A, Magrì A, Matafora V, Audrito V, Arcella P, Lazzari L, et al. Vitamina C restricționează apariția rezistenței dobândite la terapiile țintite pe EGFR în cancerul colorectal. Raci (Basel) 2020; 12 (3): 685. doi: 10.3390/cancers12030685. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]160. 

El Banna N, Hatem E, Heneman-Masurel A, Léger T, Baïlle D, Vernis L, et al. Modificări redox ale proteinelor care conțin cisteină, oprirea ciclului celular și inhibarea translației: implicarea în moartea celulelor cancerului de sân indus de vitamina C. Redox Biol. 2019; 26 :101290. doi: 10.1016/j.redox.2019.101290. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]161. 

Bober P, Tomková Z, Alexovič M, Ropovik I, Sabo J. Răspunsul proteinei desfășurate controlează apoptoza indusă de stresul reticulului endoplasmatic a celulelor MCF-7 printr-o doză mare de tratament cu vitamina C. Mol Biol Rep. 2019; 46 (1):1275–1284. doi: 10.1007/s11033-019-04598-w. [ PubMed ] [ CrossRef ] [ Google Scholar ]162. 

Grant MM. Identificarea proteinelor SUMOilate în celulele neuroblastomului după tratamentul cu peroxid de hidrogen sau ascorbat. BMB Rep. 2010; 43 (11):720–725. doi: 10.5483/BMBRep.2010.43.11.720. [ PubMed ] [ CrossRef ] [ Google Scholar ]163. 

Nagappan A, Park H, Park K, Kim JA, Hong G, Kang S și colab. Analiza proteomică a proteinelor exprimate diferențial în celulele AGS tratate cu vitamina C. BMC Biochem. 2013; 14 (1):24. doi: 10.1186/1471-2091-14-24. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]164. 

Park S, Lee J, Yeom CH. O abordare proteomică a identificării țintelor moleculare timpurii modificate de acidul L-ascorbic în celulele leucemice umane NB4. J Cell Biochim. 2006; 99 (6):1628–1641. doi: 10.1002/jcb.20971. [ PubMed ] [ CrossRef ] [ Google Scholar ]165. 

Park S, Ahn ES, Lee S, Jung M, Park JH, Yi SY, et al. Analiza proteomică dezvăluie reglarea în sus a RKIP la șoarecele BALB/C implantat cu S-180 după tratamentul cu acid ascorbic. J Cell Biochim. 2009; 106 (6):1136–1145. doi: 10.1002/jcb.22097. [ PubMed ] [ CrossRef ] [ Google Scholar ]166. 

Lee J, Lee G, Park JH, Lee S, Yeom CH, Na B și colab. Analiza proteomică a țesutului tumoral la șoarecele BALB/C implantat CT-26 după tratamentul cu acid ascorbic. Cell Mol Biol Lett. 2012; 17 (1):62–76. doi: 10.2478/s11658-011-0035-7. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]167. 

Bober P, Alexovic M, Talian I, Tomkova Z, Viscorova Z, Benckova M, et al. Analiza proteomică a efectului vitaminei C asupra citotoxicității doxorubicinei în linia celulară de cancer de sân MCF-7. J Cancer Res Clin Oncol. 2017; 143 (1):35–42. doi: 10.1007/s00432-016-2259-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]168. 

Gustafson CB, Yang C, Dickson KM, Shao H, Van Booven D, Harbour JW și colab. Reprogramarea epigenetică a celulelor melanomului prin tratamentul cu vitamina C. Clin Epigenetica. 2015; 7 (1):51. doi: 10.1186/s13148-015-0087-z. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]169. 

Sant DW, Mustafi S, Gustafson CB, Chen J, Slingerland JM, Wang G. Vitamina C promovează apoptoza în celulele cancerului de sân prin creșterea expresiei TRAIL. Sci Rep. 2018; 8 (1): 5306. doi: 10.1038/s41598-018-23714-7. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]170. 

Ge G, Peng D, Xu Z, Guan B, Xin Z, He Q și colab. Restaurarea 5-hidroximetilcitozinei prin ascorbat blochează creșterea tumorii renale. EMBO Rep. 2018; 19 (8):e45401. doi: 10.15252/embr.201745401. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]171. 

Peng D, Ge G, Gong Y, Zhan Y, He S, Guan B și colab. Vitamina C crește nivelul de 5-hidroximetilcitozină și inhibă creșterea cancerului de vezică urinară. Clin Epigenetica. 2018; 10 (1):94. doi: 10.1186/s13148-018-0527-7. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]172. 

Zhang X, Liu T, Li Z, Feng Y, Corpe C, Liu S și colab. Hepatoamele sunt extrem de sensibile la ascorbatul farmacologic (P-AscH-) Teranostice. 2019; 9 (26):8109–26. doi: 10.7150/thno.35378. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]173. 

Pei Z, Zhang X, Ji C, Liu SM, Wang J. Analiza căilor transcriptomice și funcționale a citotoxicității induse de ascorbat și a rezistenței limfomului Burkitt. Oncotarget. 2016; 7 (39):63950–63959. doi: 10.18632/oncotarget.11740. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]174. 

Cimmino L, Neel BG, Aifantis I. Vitamina C în reprogramarea celulelor stem și cancer. Trends Cell Biol. 2018; 28 (9):698–708. doi: 10.1016/j.tcb.2018.04.001. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]175. 

Kim K, Pie J, Park J, Park Y, Kim H, Kim M. Acidul retinoic și acidul ascorbic acționează sinergic în inhibarea proliferării celulelor canceroase de sân uman. J Nutr Biochem. 2006; 17 (7):454–462. doi: 10.1016/j.jnutbio.2005.10.009. [ PubMed ] [ CrossRef ] [ Google Scholar ]176. 

Ghanem A, Melzer AM, Zaal E, Neises L, Baltissen D, Matar O, et al. Ascorbatul ucide celulele canceroase de sân prin recablarea metabolismului prin dezechilibrul redox și criza energetică. Free Radic Biol Med. 2021; 163 :196–209. doi: 10.1016/j.freeradbiomed.2020.12.012. [ PubMed ] [ CrossRef ] [ Google Scholar ]177. 

Uetaki M, Tabata S, Nakasuka F, Soga T, Tomita M. Alterări metabolomice în celulele canceroase umane prin stresul oxidativ indus de vitamina C. Sci Rep. 2015; 5 (1): 13896. doi: 10.1038/srep13896. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]178. 

Lin C, Dong J, Wei Z, Cheng KK, Li J, You S și colab. Profilurile metabolice bazate pe 1H RMN delimitează efectul anticancer al vitaminei C și al oxaliplatinei asupra celulelor carcinomului hepatocelular. J Proteome Res. 2020; 19 (2):781–793. doi: 10.1021/acs.jproteome.9b00635. [ PubMed ] [ CrossRef ] [ Google Scholar ]179. 

Sarna S, Bhola RK. Studii chimio-imunoterapeutice asupra limfomului Dalton la șoareci folosind cisplatină și acid ascorbic: efect antitumoral sinergic in vivo și in vitro. Arch Immunol Ther Exp. 1993; 41 (5–6):327–333. [ PubMed ] [ Google Scholar ]180. 

Kurbacher CM, Wagner U, Kolster B, Andreotti PE, Krebs D, Bruckner HW. Acidul ascorbic (vitamina C) îmbunătățește activitatea antineoplazică a doxorubicinei, cisplatinei și paclitaxelului în celulele carcinomului mamar uman in vitro. Cancer Lett. 1996; 103 (2):183–189. doi: 10.1016/0304-3835(96)04212-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]181. 

Kalita S, Verma AK, Prasad SB. Activitate anticanceroasă mediată de clorambucil și acid ascorbic și toxicitate hematologică la șoarecii purtători de limfom ascitic Dalton. Indian J Exp Biol. 2014; 52 (2):112–124. [ PubMed ] [ Google Scholar ]182. 

Frömberg A, Gutsch D, Schulze D, Vollbracht C, Weiss G, Czubayko F și colab. Ascorbatul exercită efecte anti-proliferative prin inhibarea ciclului celular și sensibilizează celulele tumorale față de medicamentele citostatice. Cancer Chemother Pharmacol. 2011; 67 (5):1157–1166. doi: 10.1007/s00280-010-1418-6. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]183. 

Espey MG, Chen P, Chalmers B, Drisko J, Sun AY, Levine M și colab. Ascorbatul farmacologic face sinergie cu gemcitabina în modelele preclinice de cancer pancreatic. Free Radic Biol Med. 2011; 50 (11):1610–1619. doi: 10.1016/j.freeradbiomed.2011.03.007. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]184. 

Martinotti S, Ranzato E, Burlando B. Screeningul in vitro a combinațiilor sinergice de ascorbat-medicament pentru tratamentul mezoteliomului malign. Toxicol Vitr. 2011; 25 (8):1568–1574. doi: 10.1016/j.tiv.2011.05.023. [ PubMed ] [ CrossRef ] [ Google Scholar ]185. 

Castro ML, McConnell MJ, Herst PM. Radiosensibilizarea prin ascorbat farmacologic în celulele glioblastom multiforme, celulele gliale umane și HUVEC depinde de capacitățile lor antioxidante și de reparare a ADN-ului și nu este specifică cancerului. Free Radic Biol Med. 2014; 74 :200–209. doi: 10.1016/j.freeradbiomed.2014.06.022. [ PubMed ] [ CrossRef ] [ Google Scholar ]186. 

Giommarelli C, Corti A, Supino R, Favini E, Paolicchi A, Pompella A, et al. Rezistența dependentă de γ-glutamiltransferază la trioxidul de arsen în celulele melanomului și sensibilizarea celulară de către acidul ascorbic. Free Radic Biol Med. 2009; 46 (11):1516–1526. doi: 10.1016/j.freeradbiomed.2009.03.006. [ PubMed ] [ CrossRef ] [ Google Scholar ]187. 

Du J, Cieslak JA, Welsh JL, Sibenaller ZA, Allen BG, Wagner BA, et al. Ascorbatul farmacologic Radiosensibilizează cancerul pancreatic. Cancer Res. 2015; 75 (16):3314–3326. doi: 10.1158/0008-5472.CAN-14-1707. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]188. 

Cieslak JA, Sibenaller ZA, Walsh SA, Ponto LLB, Du J, Sunderland JJ, et al. Tomografia cu emisie de pozitroni cu timidină marcată cu fluor 18 (FLT-PET) ca indice al proliferării celulare după terapia farmacologică pe bază de ascorbat. Radiat Res. 2016; 185 (1):31–38. doi: 10.1667/RR14203.1. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]189. 

Alexander MS, O’Leary BR, Wilkes JG, Gibson AR, Wagner BA, Du J, et al. Oxidarea farmacologică îmbunătățită a ascorbatului Radiosensibilizează cancerul pancreatic. Radiat Res. 2018; 191 (1):43. doi: 10.1667/RR15189.1. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]190. 

Hosokawa Y, Saga R, Monzen S, Terashima S, Tsuruga E. Acidul ascorbic nu reduce efectul anticancer al radioterapiei. Biomed Rep. 2017; 6 (1):103–107. doi: 10.3892/br.2016.819. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]191. 

Grasso C, Fabre MS, Collis SV, Castro ML, Field CS, Schleich N, et al. Dozele farmacologice de ascorbat zilnic protejează tumorile de deteriorarea radiațiilor după o singură doză de radiații într-un model de gliom intracranian de șoarece. Front Oncol. 2014; 15 :4. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]192. 

Carr AC, Cook J. Vitamina C intravenoasă pentru terapia cancerului – identificarea lacunelor actuale în cunoștințele noastre. Front Physiol. 2018; 23 :9. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]193. 

Demiray M. Terapia combinatorie a vitaminei C in doze mari si a inhibitorilor PARP in deficitul de reparare a ADN-ului: o serie de 8 pacienti. Integr Cancer Ther. 2020; 19 :1–10. doi: 10.1177/1534735420969812. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]194. 

Vuyyuri SB, Rinkinen J, Worden E, Shim H, Lee S, Davis KR. Acidul ascorbic și un inhibitor citostatic al glicolizei induc sinergic apoptoza în celulele canceroase pulmonare non-mici. Chellappan SP, editor. Plus unu. 2013; 8 (6):e67081. doi: 10.1371/journal.pone.0067081. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]195. 

Yiang GT, Chou PL, Hung YT, Chen JN, Chang WJ, Yu YL și colab. Vitamina C îmbunătățește activitatea anticanceroasă în celulele de carcinom hepatocelular Hep3B tratate cu metotrexat. Oncol Rep. 2014; 32 (3):1057–1063. doi: 10.3892/or.2014.3289. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]196. 

Gilloteaux J, Jamison JM, Arnold D, Taper HS, Summers JL. Aspecte ultrastructurale ale Autoschizis: o nouă moarte a celulelor canceroase indusă de acțiunea sinergică a Ascorbatului/Menadionei asupra celulelor carcinomului vezicii urinare umane. Ultrastruct Pathol. 2001; 25 (3):183–192. doi: 10.1080/019131201300343810. [ PubMed ] [ CrossRef ] [ Google Scholar ]197. 

Gilloteaux J, Jamison JM, Neal D, Summers JL. Acțiuni citotoxice antitumorale sinergice ale Ascorbatului și Menadionei asupra prostatei umane (DU145) Celulele canceroase in vitro: nucleu și alte leziuni precedând moartea celulară de către Autoschizis. Ultrastruct Pathol. 2014; 38 (2):116–140. doi: 10.3109/01913123.2013.852645. [ PubMed ] [ CrossRef ] [ Google Scholar ]198. 

Noto V, Taper HS, Yi-Hua J, Janssens J, Bonte J, De Loecker W. Efectele tratamentului cu ascorbat de sodiu (vitamina C) și 2-metil-1,4-naftochinonă (vitamina K3) asupra celulelor tumorale umane creșterea in vitro. I. Sinergismul acțiunii combinate de vitamina C și K3. Cancer. 1989; 63 (5):901–906. doi: 10.1002/1097-0142(19890301)63:5<901::AID-CNCR2820630518>3.0.CO;2-G. [ PubMed ] [ CrossRef ] [ Google Scholar ]199. 

Venugopal M. Activitatea antitumorală sinergică a vitaminelor C și K3 împotriva liniilor celulare de carcinom de prostată uman. Cell Biol Int. 1996; 20 (12):787–797. doi: 10.1006/cbir.1996.0102. [ PubMed ] [ CrossRef ] [ Google Scholar ]200. 

Kassouf W, Highshaw R, Nelkin GM, Dinney CP, Kamat AM. Vitaminele C și K3 sensibilizează tumorile uroteliale umane la gemcitabină. J Urol. 2006; 176 (4):1642–1647. doi: 10.1016/j.juro.2006.06.042. [ PubMed ] [ CrossRef ] [ Google Scholar ]201. 

Taper HS, Keyeux A, Roberfroid M. Potențiarea radioterapiei prin pretratament netoxic cu vitaminele C și K3 combinate la șoarecii purtători de tumoră transplantabilă solidă. Anticancer Res. 1996; 16 (1):499–503. [ PubMed ] [ Google Scholar ]202. 

Verrax J, Cadrobbi J, Delvaux M, Jamison JM, Gilloteaux J, Summers JL, et al. Asocierea vitaminelor C și K3 ucide celulele canceroase în principal prin autoschizis, o formă nouă de moarte celulară. Baza utilizării lor potențiale ca coadjuvanți în terapia anticancer. Eur J Med Chem. 2003; 38 (5):451–457. doi: 10.1016/S0223-5234(03)00082-5. [ PubMed ] [ CrossRef ] [ Google Scholar ]203. 

Du J, Cullen JJ, Buettner GR. Acid ascorbic: chimie, biologie și tratamentul cancerului. Biochim Biophys Acta Rev Cancer. 2012; 1826 (2):443–457. doi: 10.1016/j.bbcan.2012.06.003. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]204. 

Michels AJ, Frei B. Mituri, artefacte și defecte fatale: identificarea limitărilor și oportunităților în cercetarea vitaminei C. Nutrienți. 2013; 5 (12):5161–5192. doi: 10.3390/nu5125161. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]205. 

Heaney ML, Gardner JR, Karasavvas N, Golde DW, Scheinberg DA, Smith EA și colab. Vitamina C antagonizează efectele citotoxice ale medicamentelor antineoplazice. Cancer Res. 2008; 68 (19):8031–8038. doi: 10.1158/0008-5472.CAN-08-1490. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]206. 

Buettner GR, Jurkiewicz BA. Metale catalitice, ascorbat și radicali liberi: combinații de evitat. Radiat Res. 1996; 145 (5):532–541. doi: 10.2307/3579271. [ PubMed ] [ CrossRef ] [ Google Scholar ]207. 

Clément MV, Ramalingam J, Long LH, Halliwell B. Citotoxicitatea in vitro a ascorbatului depinde de mediul de cultură utilizat pentru efectuarea testului și implică peroxid de hidrogen. Semnal antioxid Redox. 2001; 3 (1):157–163. doi: 10.1089/152308601750100687. [ PubMed ] [ CrossRef ] [ Google Scholar ]208. 

Mojić M, Pristov JB, Maksimović-Ivanić D, Jones DR, Stanić M, Mijatović S și colab. Fierul extracelular diminuează efectele anticancer ale vitaminei C: un studiu in vitro. Sci Rep. 2015; 4 (1): 5955. doi: 10.1038/srep05955. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]209. 

Doskey CM, van ‘t Erve TJ, Wagner BA, Buettner GR. Moli de substanță per celulă este o măsură de dozare foarte informativă în cultura celulară. Plus unu. 2015; 10 (7):e0132572. doi: 10.1371/journal.pone.0132572. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]210. 

Yu R, Schellhorn HE. Aplicații recente ale modelelor de deficiență antioxidantă animală proiectate în nutriția umană și bolile cronice. J Nutr. 2013; 143 (1):1–11. doi: 10.3945/jn.112.168690. [ PubMed ] [ CrossRef ] [ Google Scholar ]211. 

Verrax J, Calderon PB. Concentrațiile farmacologice de ascorbat sunt atinse prin administrare parenterală și prezintă efecte antitumorale. Free Radic Biol Med. 2009; 47 (1):32–40. doi: 10.1016/j.freeradbiomed.2009.02.016. [ PubMed ] [ CrossRef ] [ Google Scholar ]212. 

Iwama M, Amano A, Shimokado K, Maruyama N, Ishigami A. Nivelurile de acid ascorbic în diferite țesuturi, plasma și urina șoarecilor în timpul îmbătrânirii. J Nutr Sci Vitaminol (Tokyo) 2012; 58 (3):169–174. doi: 10.3177/jnsv.58.169. [ PubMed ] [ CrossRef ] [ Google Scholar ]213. 

Schleicher RL, Carroll MD, Ford ES, Lacher DA. Vitamina C seric și prevalența deficienței de vitamina C în Statele Unite: 2003–2004 Ancheta națională de examinare a sănătății și nutriției (NHANES) Am J Clin Nutr. 2009; 90 (5):1252–1263. doi: 10.3945/ajcn.2008.27016. [ PubMed ] [ CrossRef ] [ Google Scholar ]214. 

White R, Nonis M, Pearson JF, Burgess E, Morrin HR, Pullar JM și colab. Starea scăzută a vitaminei C la pacienții cu cancer este asociată cu caracteristicile pacientului și ale tumorii. Nutrienți. 2020; 12 (8): 2338. doi: 10.3390/nu12082338. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]215. 

Fain O, Mathieu E, Thomas M. Lecția săptămânii: scorbut la pacienții cu cancer. BMJ. 1998; 316 (7145):1661–1662. doi: 10.1136/bmj.316.7145.1661. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]216. 

Campbell EJ, Vissers MC, Dachs G. Disponibilitatea ascorbatului afectează rata de implantare a tumorii și crește respingerea tumorii la șoarecii Gulo-/-. hipoxie. 2016; 4 :41–52. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]217. 

Vissers MCM, Das AB. Mecanisme potențiale de acțiune pentru vitamina C în cancer: revizuirea dovezilor. Front Physiol. 2018; 9 (IUL): 809. doi: 10.3389/fphys.2018.00809. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]218. 

Hapke RY, Haake SM. Tranziția epitelială la mezenchimală indusă de hipoxie în cancer. Cancer Lett. 2020; 487 :10–20. doi: 10.1016/j.canlet.2020.05.012. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]219. 

Pfeifhofer-Obermair C, Tymoszuk P, Petzer V, Weiss G, Nairz M. Fier în micromediul tumoral – Conectarea punctelor. Front Oncol. 2018; 8 (NOV): 549. doi: 10.3389/fonc.2018.00549. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]220. 

Cao LL, Liu H, Yue Z, Liu L, Pei L, Gu J și colab. Chelarea fierului inhibă creșterea celulelor canceroase și modulează starea globală de metilare a histonelor în cancerul colorectal. Biometale. 2018; 31 (5):797–805. doi: 10.1007/s10534-018-0123-5. [ PubMed ] [ CrossRef ] [ Google Scholar ]221. 

Jung M, Mertens C, Tomat E, Brüne B. Iron ca jucător central și țintă promițătoare în progresia cancerului. Int J Mol Sci. 2019; 20 (2): 273. doi: 10.3390/ijms20020273. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]222. 

De Luca A, Barile A, Arciello M, Rossi L. Homeostazia cuprului ca țintă atât a strategiilor consolidate, cât și a celor inovatoare ale terapiei antitumorale. J Trace Elem Med Biol. 2019; 55 :204–213. doi: 10.1016/j.jtemb.2019.06.008. [ PubMed ] [ CrossRef ] [ Google Scholar ]223. 

Chen MF, Yang CM, Su CM, Hu ML. Vitamina C protejează împotriva nefrotoxicității și daunelor induse de cisplatină, fără a-și reduce eficacitatea la șoarecii C57BL/6 Xenogrefeți cu carcinom pulmonar Lewis. Nutr Cancer. 2014; 66 (7):1085–1091. doi: 10.1080/01635581.2014.948211. [ PubMed ] [ CrossRef ] [ Google Scholar ]224. 

Du J, Wagner BA, Buettner GR, Cullen JJ. Rolul fierului labil în toxicitatea ascorbatului farmacologic. Free Radic Biol Med. 2015; 84 :289–295. doi: 10.1016/j.freeradbiomed.2015.03.033. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]225. 

Schieber M, Chandel NS. Funcția ROS în semnalizarea redox și stresul oxidativ. Curr Biol. 2014; 24 (10):R453–R462. doi: 10.1016/j.cub.2014.03.034. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]226. 

Liberti MV, Locasale JW. Efectul Warburg: cum beneficiază celulele canceroase? Trends Biochem Sci. 2016; 41 (3):211–218. doi: 10.1016/j.tibs.2015.12.001. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]227. 

Sullivan LB, Chandel NS. Specii reactive de oxigen mitocondrial și cancer. Cancer Metab. 2014; 2 (1):17. doi: 10.1186/2049-3002-2-17. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]228. 

Cockfield JA, Schafer ZT. Apărare antioxidantă: o vulnerabilitate specifică contextului celulelor canceroase. Cancer (Basel). 2019; 11 (8): 1208. doi: 10.3390/cancers11081208. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]229. 

Oberley TD, Oberley LW. Nivelurile enzimelor antioxidante în cancer. Histol Histopathol. 1997; 12 (2):525–535. [ PubMed ] [ Google Scholar ]230. 

Doskey CM, Buranasudja V, Wagner BA, Wilkes JG, Du J, Cullen JJ, et al. Celulele tumorale au capacitatea scăzută de a metaboliza H2O2: implicații pentru ascorbatul farmacologic în terapia cancerului. Redox Biol. 2016; 10 :274–284. doi: 10.1016/j.redox.2016.10.010. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]231. 

Klingelhoeffer C, Kämmerer U, Koospal M, Mühling B, Schneider M, Kapp M și colab. Rezistența naturală la stresul oxidativ indus de acid ascorbic este mediată în principal de activitatea catalazei în celulele canceroase umane, iar silenciarea catalazei sensibilizează la stresul oxidativ. Complement BMC Altern Med. 2012; 12 (1):1–10. doi: 10.1186/1472-6882-12-61. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]232. 

Pawlowska E, Szczepanska J, Blasiak J. Efectele pro și antioxidante ale vitaminei C în cancer în corespondență cu concentrațiile sale dietetice și farmacologice. Oxidative Med Cell Longev. 2019; 2019 :1–18. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]233. 

Liu D, Xu Y. P53, stresul oxidativ și îmbătrânirea. Semnal antioxid Redox. 2011; 15 (6):1669–1678. doi: 10.1089/ars.2010.3644. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]234. 

Freund E, Liedtke KR, Miebach L, Wende K, Heidecke A, Kaushik NK și colab. Identificarea a doi inhibitori de kinază cu toxicitate sinergică cu peroxid de hidrogen în doză mică în celulele cancerului colorectal in vitro. Cancer (Basel). 2020; 12 (1): 122. doi: 10.3390/cancers12010122. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]235. 

El Hassouni B, Granchi C, Vallés-Martí A, Supadmanaba IGP, Bononi G, Tuccinardi T, et al. Rolul dihotomic al căii de metabolism glicolitic în metastaza cancerului: interacțiunea cu micromediul tumoral complex și strategii terapeutice noi. Semin Cancer Biol. 2020; 60 :238–248. doi: 10.1016/j.semcancer.2019.08.025. [ PubMed ] [ CrossRef ] [ Google Scholar ]236. 

Graczyk-Jarzynka A, Goral A, Muchowicz A, Zagozdzon R, Winiarska M, Bajor M, et al. Inhibarea eliminării H2O2 dependentă de tioredoxină sensibilizează celulele B maligne la ascorbat farmacologic. Redox Biol. 2019; 21 :101062. doi: 10.1016/j.redox.2018.11.020. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]237. 

Cammack R, Wrigglesworth JM, Baum H, Ponka P, Schulman HM. În Transport și Depozitare Fier. Boca Raton: CRC Press; 1990. RCW. Enzime dependente de fier în sistemele mamiferelor; pp. 17–39. [ Google Scholar ]238. 

McCormick WJ. Cancer: factorul de precondiționare în patogeneză; o nouă abordare etiologică. Arch Pediatr. 1954; 71 (10):313–322. [ PubMed ] [ Google Scholar ]239. 

McCormick WJ. Cancer: o boală de colagen, secundară unei deficiențe nutriționale. Arch Pediatr. 1959; 76 (4):166–171. [ PubMed ] [ Google Scholar ]240. 

Cameron E, Rotman D. Acid ascorbic, proliferare celulară și cancer. Lancet. 1972; 299 (7749): 542. doi: 10.1016/S0140-6736(72)90215-2. [ PubMed ] [ CrossRef ] [ Google Scholar ]241. 

Boyera N, Galey I, Bernard BA. Efectul vitaminei C și derivaților săi asupra sintezei colagenului și reticulare de către fibroblastele umane normale. Int J Cosmet Sci. 1998; 20 (3):151–158. doi: 10.1046/j.1467-2494.1998.171747.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]242. 

Cameron E, Pauling L, Leibovitz B. Acid ascorbic și cancer: o revizuire. Cancer Res. 1979; 39 (3):663–681. [ PubMed ] [ Google Scholar ]243. 

Cameron E, Campbell A, Jack T. Tratamentul ortomolecular al cancerului. Chem Biol Interact. 1975; 11 (5):387–393. doi: 10.1016/0009-2797(75)90007-1. [ PubMed ] [ CrossRef ] [ Google Scholar ]244. 

Jackson JA, Riordan HD, Hunninghake RE, Riordan N. Doze mari de vitamina C intravenoasă și supraviețuire îndelungată a unui pacient cu cancer de cap de pancreas. J Orthomol Med. 1995; 10 (2):87–8. [ Google Scholar ]245. 

Zhao L, Quan Y, Wang J, Wang F, Zheng Y, Zhou A. Vitamina C inhibă proliferarea, migrarea și tranziția epitelială-mezenchimală a celulelor epiteliale ale cristalinului prin destabilizarea HIF-1α Int J Clin Exp Med. 2015; 8 (9):15155–15163. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]246. 

Wilkes JG, O’Leary BR, Du J, Klinger AR, Sibenaller ZA, Doskey CM, et al. Ascorbatul farmacologic (P-AscH-) suprimă factorul 1α inductibil de hipoxie (HIF-1α) în adenocarcinomul pancreatic. Clin Exp Metastasis. 2018; 35 (1–2):37–51. doi: 10.1007/s10585-018-9876-z. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]247. 

Lee P, Chandel NS, Simon MC. Adaptarea celulară la hipoxie prin factori inductibili de hipoxie și nu numai. Nat Rev Mol Cell Biol. 2020; 21 :268–283. doi: 10.1038/s41580-020-0227-y. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]248. 

Fischer AP, Miles SL. Acidul ascorbic, dar nu acidul dehidroascorbic, crește conținutul intracelular de vitamina C pentru a scădea activitatea factorului inductibil de hipoxie -1 alfa și pentru a reduce potențialul malign în melanomul uman. Biomed Pharmacother. 2017; 86 :502–513. doi: 10.1016/j.biopha.2016.12.056. [ PubMed ] [ CrossRef ] [ Google Scholar ]249. 

Jóźwiak P, Ciesielski P, Zaczek A, Lipińska A, Pomorski L, Wieczorek M, et al. Exprimarea factorului inductibil de hipoxie 1α și 2α și asocierea acestuia cu nivelul vitaminei C în leziunile tiroidiene. J Biomed Sci. 2017; 24 (1):1–10. doi: 10.1186/s12929-017-0388-y. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]250. 

Wohlrab C, MCM V, Phillips E, Morrin H, Robinson BA, Dachs GU. Asocierea dintre ascorbat și factorii inducibili de hipoxie în carcinomul cu celule renale umane necesită o proteină von Hippel-Lindau funcțională. Front Oncol. 2018; 8 (NOV): 574. doi: 10.3389/fonc.2018.00574. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]251. 

Wohlrab C, Kuiper C, Vissers MC, Phillips E, Robinson BA, Dachs GU. Ascorbatul modulează calea hipoxică prin creșterea activității intracelulare a hidroxilazelor HIF în celulele de carcinom renal. hipoxie. 2019; 7 :17–31. doi: 10.2147/HP.S201643. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]252. 

Kuiper C, Dachs GU, Currie MJ, Vissers MCM. Ascorbatul intracelular îmbunătățește activitatea hidroxilazei factorului inductibil de hipoxie (HIF) și suprimă de preferință răspunsul transcripțional HIF-1. Free Radic Biol Med. 2014; 69 :308–317. doi: 10.1016/j.freeradbiomed.2014.01.033. [ PubMed ] [ CrossRef ] [ Google Scholar ]253. 

Kuiper C, Dachs G, Munn D, Currie M, Robinson B, Pearson JF și colab. Creșterea tumorii Ascorbatul este asociat cu supraviețuirea prelungită fără boală și cu scăderea activării factorului 1 inductibil de hipoxie în cancerul colorectal uman. Front Oncol. 2014; 0:10 . [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]254. 

Kuiper C, Molenaar IGM, Dachs GU, Currie MJ, Sykes PH, Vissers MCM. Nivelurile scăzute de ascorbat sunt asociate cu o activitate crescută a factorului 1 inductibil de hipoxie și un fenotip tumoral agresiv în cancerul endometrial. Cancer Res. 2010; 70 (14):5749–5758. doi: 10.1158/0008-5472.CAN-10-0263. [ PubMed ] [ CrossRef ] [ Google Scholar ]255. 

Tian W, Wang Y, Xu Y, Guo X, Wang B, Sun L și colab. Factorul inductibil de hipoxie face celulele canceroase mai sensibile la toxicitatea indusă de vitamina C. J Biol Chem. 2014; 289 (6):3339–3351. doi: 10.1074/jbc.M113.538157. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]256. 

Klutstein M, Nejman D, Greenfield R, Cedar H. Metilarea ADN-ului în cancer și îmbătrânire. Cancer Res. 2016; 76 :3446–3450. doi: 10.1158/0008-5472.CAN-15-3278. [ PubMed ] [ CrossRef ] [ Google Scholar ]257. 

Greenberg MVC, Bourc’his D. Rolurile diverse ale metilării ADN-ului în dezvoltarea și boala mamiferelor. Nat Rev Mol Cell Biol. 2019; 20 :590–607. doi: 10.1038/s41580-019-0159-6. [ PubMed ] [ CrossRef ] [ Google Scholar ]258. 

van Gorkom G, Klein Wolterink R, Van Elssen C, Wieten L, Germeraad W, Bos G. Influența vitaminei C asupra limfocitelor: o prezentare generală. Antioxidanți. 2018; 7 (3):41. doi: 10.3390/antiox7030041. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]259. 

Yue X, Rao A. dioxigenazele familiei TET și vitamina C activatoare TET în răspunsurile imune și cancer. Sânge. 2020; 136 (12):1394–1401. doi: 10.1182/blood.2019004158. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]260. 

Bryant KL, Mancias JD, Kimmelman AC, Der CJ. KRAS: hrănirea proliferării cancerului pancreatic. Trends Biochem Sci. 2014; 39 (2):91–100. doi: 10.1016/j.tibs.2013.12.004. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]261. 

Kaminska B, Czapski B, Guzik R, Król S, Gielniewski B. Consecințele mutațiilor IDH1/2 în glioame și o evaluare a inhibitorilor care vizează proteinele IDH mutante. Molecule. 2019; 24 (5): 968. doi: 10.3390/molecules24050968. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]262. 

Montalban-Bravo G, DiNardo CD. Rolul mutațiilor ID în leucemia mieloidă acută. Viitorul Oncol. 2018; 14 (10):979–993. doi: 10.2217/fon-2017-0523. [ PubMed ] [ CrossRef ] [ Google Scholar ]263. 

Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, et al. Caracterizarea genetică a modificărilor TET1, TET2 și TET3 în afecțiunile maligne mieloide. Sânge. 2009; 114 (1):144–147. doi: 10.1182/blood-2009-03-210039. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]264. 

Cossey LN, Rahim F, Larsen CP. Nefropatie oxalatică și vitamina C intravenoasă. Am J Kidney Dis. 2013; 61 (6):1032–1035. doi: 10.1053/j.ajkd.2013.01.025. [ PubMed ] [ CrossRef ] [ Google Scholar ]265. 

Quinn J, Gerber B, Fouche R, Kenyon K, Blom Z, Muthukanagaraj P. Efectul infuziei cu doză mare de vitamina C la un pacient cu deficit de glucoză-6-fosfat dehidrogenază. Caz Rep Med. 2017; 2017 :1–4. doi: 10.1155/2017/5202606. [ Articol gratuit PMC ] [ PubMed ] [ CrossRef ] [ Google Scholar ]


Articole din 

Journal of Experimental & Clinical Cancer Research: CR sunt furnizate aici prin amabilitatea 

BioMed Central

Impactul unui stil de viață sănătos asupra riscului de a dezvolta cancer, boli cardiovasculare sau diabet de tip 2

Într-un studiu raportat în JACC: CardioOncology, Cao și colab. au descoperit că îndeplinirea mai multor componente ale unui stil de viață sănătos a fost asociată cu un risc redus de a dezvolta cancer într-o cohortă inițială fără cancer și un risc redus de a dezvolta boli cardiovasculare și tip 2 – diabet zaharat atât în ​​cohorta fără cancer, cât și într-o cohortă de pacienți cu cancer.

Detalii de studiu

Studiul a implicat date de la Biobank din Marea Britanie privind 397.136 de persoane fără cancer la recrutare și 35.564 de pacienți cu cancer cu vârsta cuprinsă între 40 și 70 de ani, care nu aveau boli cardiovasculare și diabet de tip 2 la recrutare. Factorii stilului de viață au fost evaluați la momentul inițial utilizând un indice al stilului de viață sănătos (HLI) din cinci comportamente legate de bolile cardiometabolice, constând din starea de fumat, activitate fizică, dietă, consumul de alcool și durata somnului. Pentru fiecare factor de stil de viață sănătos, participanții au primit un scor de 1 dacă au îndeplinit criteriul și 0 dacă nu; suma celor cinci componente a dat un scor final de la 0 la 5, cu scoruri mai mari indicând un stil de viață mai sănătos. Analizele au fost ajustate pentru vârstă, sex, indicele de privare Townsend, etnie, nivelul de educație, statutul de angajare, hipertensiune arterială și indicele de masă corporală.

Un stil de viață sănătos este asociat cu o tranziție mai lentă de la dezvoltarea cancerului la dezvoltarea ulterioară a bolilor cardiovasculare și a diabetului de tip 2. Mai mult, în rândul pacienților cu cancer, un stil de viață sănătos este asociat cu un risc mai mic de boli cardiovasculare și diabet de tip 2. Acest studiu evidențiază beneficiile practice ale aderării la un stil de viață sănătos.— Cao și colab

Trimiteți acest citat pe Tweet

Incidența cancerului, a bolilor cardiovasculare și a diabetului de tip 2

Urmărirea maximă a fost de 15 ani. Dintre 397.136 de participanți fără cancer (vârsta medie = 55,7 ani, 44,6% bărbați), 40.097 (10,1%) au dezvoltat cancer, 28.164 (7,1%) au dezvoltat boli cardiovasculare și 12.712 (3,2%) au dezvoltat diabet de tip 2.

Dintre 35.564 de pacienți cu cancer predominant (vârsta medie = 59,3 ani, 33,0% bărbați), 2.902 (8,2%) au dezvoltat boli cardiovasculare și 1.284 (3,6%) au dezvoltat diabet de tip 2.

Rezultate în cohorta fără cancer

Fiecare creștere de 1 punct a scorului HLI a fost asociată cu un risc redus de a dezvolta cancer (rația de risc [HR] = 0,92, interval de încredere [IC] 95% = 0,91–0,93). Fiecare creștere de 1 punct a fost asociată cu un risc redus de a dezvolta boli cardiovasculare după diagnosticul de cancer în rândul celor cu cancer (HR = 0,90, 95% CI = 0,86–0,94) și printre cei care au rămas fără cancer (HR = 0,88, 95% CI = 0,87–0,89) și un risc redus de a dezvolta diabet de tip 2 în rândul celor care au dezvoltat cancer (HR = 0,84, 95% CI = 0,79–0,89) și printre cei care au rămas fără cancer (HR = 0,81, 95% CI = 0,80). –0,83).

Rezultate în cohorta cu prevalență a cancerului

Fiecare creștere cu 1 punct a scorului HLI a fost asociată cu un risc redus de dezvoltare a bolilor cardiovasculare (HR = 0,90, 95% CI = 0,87–0,93) și diabet de tip 2 (HR = 0,87, 95% CI = 0,83–0,91). În comparație cu scorurile HLI de 0 sau 1, rapoartele de risc pentru dezvoltarea bolilor cardiovasculare și dezvoltarea diabetului de tip 2 au fost:

  • 0,72 (95% CI = 0,60–0,86) și 1,04 (95% CI = 0,80–1,34) pentru un scor de 2
  • 0,64 (95% CI = 0,54–0,75) și 0,85 (95% CI = 0,66–1,10) pentru un scor de 3
  • 0,61 (95% CI = 0,52–0,73) și 0,77 (95% CI = 0,59–0,83) pentru un scor de 4
  • 0,56 (95% CI = 0,46–0,67) și 0,62 (95% CI = 0,47–0,83) pentru un scor de 5.  

Beneficiul scorurilor HLI mai mari în reducerea riscului de boli cardiovasculare a fost mai puternic la femei față de bărbați ( P = 0,034 pentru interacțiune); Ratele de risc pentru scorurile de la 2 la 5 față de 0 sau 1 au variat de la 0,74 la 0,61 la bărbați față de 0,59 la 0,37 la femei. Scorurile HLI mai mari au fost asociate cu un risc mai mic de a dezvolta boli cardiovasculare și diabet de tip 2, indiferent de grupa de vârstă.

Anchetatorii au concluzionat: „Un stil de viață sănătos este asociat cu o tranziție mai lentă de la dezvoltarea cancerului la dezvoltarea ulterioară a bolilor cardiovasculare și a diabetului de tip 2. Mai mult, în rândul pacienților cu cancer, un stil de viață sănătos este asociat cu un risc mai mic de boli cardiovasculare și diabet de tip 2. Acest studiu evidențiază beneficiile practice ale aderării la un stil de viață sănătos.”

Yaogang Wang, PhD , de la Școala de Sănătate Publică, Universitatea Medicală Tianjin , China, este autorul corespunzător pentru articolul JACC:CardioOncology .

Dezvăluire: Studiul a fost susținut de Fundația Națională de Științe Naturale din China. Pentru dezvăluiri complete ale autorilor studiului, vizitați jacc.org .

curcumina combate mucozita orala chimio/radio terapie

Efectele turmericului și curcuminei asupra mucozitei bucale: o analiză sistematică

Ana Gabriela Costa Normando 1,  Amanda Gomes de Menêses 2,  Isabela Porto de Toledo 1 3,  Gabriel Álvares Borges 1,  Caroline Lourenço de Lima 1,  Paula Elaine Diniz Dos Reis 2,  Eliete Neves Silva Guerra 1Afilieri extinde

Abstract

Scopul acestui studiu a fost de a evalua efectele turmericului și curcuminei în gestionarea mucozitei orale la pacienții cu cancer supuși chimioterapiei și / sau radioterapiei. Revizuirea sistematică a fost raportată în conformitate cu elementele de raportare preferate pentru recenziile sistematice și meta-analize. Căutarea a fost efectuată în următoarea bază de date: Biblioteca Cochrane, LILACS, LIVIVO, PubMed, Scopus și Web of Science. O căutare literară gri a fost efectuată utilizând Google Scholar, Open Gray și ProQuest. Metodologia studiilor incluse a fost evaluată prin Meta-analiza instrumentului de evaluare și evaluare a statisticilor. După un proces de selecție în doi pași, au fost incluse în analiză patru studii clinice randomizate și unul non-randomizat. Două studii au fost clasificate ca fiind scăzute și trei cu risc moderat de părtinire.Curcuma / curcumina a fost aplicată local ca gel sau ca apă de gură. Pacienții tratați cu curcumină / curcumină au prezentat un nivel redus de mucozită, durere, intensitate a eritemului și zonă ulcerativă. Dovezile actuale sugerează că aplicarea topică a curcuminei sau curcuminei este eficientă în controlul semnelor și simptomelor mucozitei bucale. Astfel, sunt necesare investigații suplimentare pentru a confirma efectul promițător al curcuminei și curcuminei în leziunile inflamatorii orale.

curcumina pt reactii adverse chimio si radioterapie

Revizuire Alimente Chem Toxicol

 . 2020 noiembrie; 145: 111699. doi: 10.1016 / j.fct.2020.111699. Epub 2020 25 aug.

Curcumina ca măsură preventivă sau terapeutică pentru reacțiile adverse induse de chimioterapie și radioterapie: o analiză cuprinzătoare

Sadaf Akbari 1,  Elnaz Kariznavi 2,  Mahdi Jannati 3,  Sepideh Elyasi 4,  Zahra Tayarani-Najaran 5Afilieri extinde

Abstract

Curcumina a atras multă atenție în scopuri medicinale într-o gamă largă de boli, inclusiv cancerul. În unele studii, eficacitatea sa este evaluată împotriva reacțiilor adverse induse de chimioterapie și radioterapie și, de asemenea, ca adjuvant la tratamentul cancerului. Aici am încercat să prezentăm o analiză cuprinzătoare asupra efectului protector și terapeutic al curcuminei împotriva acestor efecte secundare. METODĂ: Datele au fost colectate prin căutarea analizelor sistematice ale bazei de date Scopus, PubMed, Medline și Cochrane, folosind cuvintele cheie „nefrotoxicitate”, „cardiotoxicitate”, „genotoxicitate”, „ototoxicitate”, „hepatotoxicitate”, „toxicitate reproductivă”, „mielosupresie” „,” toxicitate pulmonară „,” efect secundar indus de radioterapie „cu” curcumă „și” curcumină „.Deși curcumina are o biodisponibilitate scăzută, aceasta a demonstrat un profil strălucit în prevenirea și gestionarea reacțiilor adverse induse de chimioterapie și radioterapie, în special pe baza studiilor in vitro și in vivo și a numărului limitat de studii la om asupra reacțiilor adverse la radioterapie. Proprietățile antioxidante și antiinflamatorii ale curcuminei sunt principalul mecanism de acțiune propus pentru gestionarea și prevenirea reacțiilor adverse. Unul dintre punctele majore privind efectul protector al curcuminei este gama sa terapeutică largă tolerabilă de doză cu efecte secundare minime. Mai mult, noile formulări nano contribuie la îmbunătățirea biodisponibilității, la creșterea eficacității și la scăderea efectelor adverse. În concluzie, pe baza cunoștințelor actuale,curcumina are un potențial de susținere semnificativ la pacienții cărora li se administrează chimioterapie sau radioterapie și poate fi sugerată ca adjutant la tratamentele împotriva cancerului. Sunt recomandate alte studii bine concepute la om.

Suplimentarea esențială de zinc, acizi grași polinesaturați ω-3, vitamina D și magneziu pentru prevenirea și tratamentul COVID-19, diabet, boli cardiovasculare, boli pulmonare și cancer

Abstract

În ciuda dezvoltării unui număr de vaccinuri pentru COVID-19, rămâne nevoia de prevenire și tratament a virusului SARS-CoV-2 și a bolii care rezultă COVID-19. Acest raport discută elementele cheie ale SARS-CoV-2 și COVID-19 care pot fi ușor tratate: intrarea virală, sistemul imunitar și inflamația și furtuna de citokine. Se arată că substanțele nutritive esențiale zinc, acids-3 acizi grași polinesaturați (PUFA), vitamina D și magneziu oferă combinația ideală pentru prevenirea și tratamentul COVID-19: prevenirea intrării SARS-CoV-2 în celulele gazdă, prevenirea proliferarea SARS-CoV-2, inhibarea inflamației excesive, control îmbunătățit al reglării sistemului imunitar, inhibarea furtunii de citokine și reducerea efectelor sindromului de detresă respiratorie acută (ARDS) și a bolilor asociate netransmisibile.Se subliniază faptul că bolile netransmisibile asociate cu COVID-19 sunt în mod inerent mai răspândite la vârstnici decât la tineri și că menținerea suficientă a zincului, ω-3 PUFA, vitamina D și magneziu este esențială pentru prevenirea persoanelor în vârstă. apariția bolilor netransmisibile precum diabetul, bolile cardiovasculare, bolile pulmonare și cancerul. Verificarea anuală a nivelurilor acestor substanțe nutritive esențiale este recomandată celor cu vârsta peste 65 de ani, împreună cu ajustări adecvate ale aportului lor, aceste servicii și livrări fiind la costuri guvernamentale. Raportul cost: beneficiu ar fi imens, deoarece costul nutrienților și testarea nivelurilor acestora ar fi foarte mici în comparație cu economiile de costuri ale specialiștilor și spitalizarea.

Abrevieri

1α, 25 (OH) 2 D 3 1α, 25-dihidroxivitamina D 3 , calcitriol 25 (OH) D 25-hidroxivitamina D 3 AS enzima de conversie a angiotensinei ACE2 enzima de conversie a angiotensinei 2 ADAM17 domeniul dezintegrinei și metaloproteinazei 17 ALA acidul α-linolenic Ang angiotensină SDRA sindromul bolii respiratorie acute ATR1 Receptorul AT1 CCL2 (MCP-1) proteine ​​chemotactice monocite-1 CCL3 (MIP-1α) proteină inflamatorie macrofagă 1α c-Kit receptorul factorului de celule stem CRP proteina C-reactiva CYP27B1 1α-hidroxilaza DHA acid docosahexaenoic EPA Acid eicosapentaenoic ERK1 / 2 kinază extracelulară reglată semnal 1/2 FGF factorul de creștere a fibroblastelor G-CSF factor de stimulare a coloniei de granulocite GM-CSF factor de stimulare a coloniilor granulocite-macrofage HCQ hidroxiclorochină HIF-1α factor 1-α inductibil de hipoxie IFN-γ interferon-γ IL-x interleukin x IL-1RN Proteina antagonistă a receptorului IL-1 IP-10 proteină interferon-γ-inductibilă M1,2 macrofag tip 1, (sau 2) MMP-2,9 metalopeptidaza matrice 2, (sau 9) NF-κB factorul nuclear κ-amplificatorul lanțului ușor al celulelor B activate P38 MAPK p38 proteine ​​kinaze activate de mitogen PDGF factor de creștere derivat din trombocite PGE2 prostaglandina E 2 PUFA acid gras polinesaturat RANTES reglată la activare, celula T normală exprimată și probabil secretată RAS sistemul renină-angiotensină ROS specii reactive de oxigen SAA amiloid seric A SCF factorul celulelor stem TGF-β transformând factorul de creștere β Th T ajutor TLR receptor de tip taxă TMPRSS2 serin protează transmembranară 2 TNF-a factor de necroză tumorală α Treg celula T reglatoare VDR receptorul vitaminei D VEGF factorul de creștere endotelial vascular Mergi la:

1. Introducere

SARS-CoV este SARS original care a fost virulent la începutul anilor 2000; este virusul care duce la starea bolii COVID-19. Există o nevoie imediată de profilaxie și tratament pentru COVID-19. va fi întotdeauna nevoie de profilaxie și tratament pentru viruși și comorbidități asemănătoare, în special în țările mai sărace. Prin urmare, este oportun să prezentăm avantajele combinației esențiale de zinc, FA-3 PUFA, vitamina D și magneziu, deoarece aceste tratamente au un cost redus, sunt extinse în acțiuni și sunt sigure, deoarece sunt prezente în mod natural în corpul uman.

A fost prezentată anterior suficiența esențială de zinc, FA-omega 3 PUFA și vitamina D pentru prevenirea și tratamentul cancerelor [ 1 ]. Prevenirea și tratamentul COVID-19 și comorbiditățile asociate sunt în prezent cele mai preocupante. Mai mult, cele patru boli principale netransmisibile care sunt cele mai răspândite la nivel mondial sunt diabetul, bolile cardiovasculare, bolile pulmonare și cancerul [ 2].]. Comorbiditățile discutate aici în contextul COVID-19 includ aceste boli netransmisibile, precum și îmbătrânirea și obezitatea. Zincul, FA-3 PUFA, vitamina D și magneziu, deși sunt foarte diferite în modul lor de acțiune, au multe efecte finale similare. Comunitatea zincului, a ω-3 PUFA(acizi grazi polinesaturati), a vitaminei D și a magneziului în situații inflamatorii inhibitoare, precum și a capacității lor de a corecta disfuncția imună, împreună cu costul redus și siguranța acestor nutrienți, le face ideale ca măsuri de prevenire de primă linie și adjuvanți în tratarea COVID-19 și comorbiditățile asociate, precum și principalele boli netransmisibile în situații non-COVID.

În pregătirea acestui manuscris au fost efectuate ample căutări în literatură. PubMed a fost utilizat în principal cu o gamă largă de șiruri de căutare. S-au făcut căutări separate pentru concepte cheie împreună cu fiecare dintre componentele individuale: ie, zinc; (PUFA SAU DHA SAU EPA); vitamina D; magneziu. O căutare PubMed a fost efectuată folosind următorul șir de căutare: (COVID-19 SAU SARS-CoV-2 SAU coronavirus) ȘI zinc ȘI (PUFA SAU DHA SAU EPA) ȘI „vitamina D” ȘI magneziu. Această căutare a produs rezultate zero, sugerând că nu au existat practic studii care să examineze efectele benefice ale suplimentării tuturor celor patru componente esențiale împreună: zinc, PUFA ω-3, vitamina D și magneziu. Cu toate acestea, cele patru componente sunt descrise sau menționate într-o serie de analize ale stării nutriționale și funcției imune și / sau inflamației [de exemplu, Ref. [[3] , [4] , [5] , [6] ]].Mergi la:

2. Zinc

Zincul este un cofactor vital pentru mai mult de 2000 de factori de transcripție și 300 de enzime în reglarea diferențierii și proliferării celulare, precum și a funcțiilor metabolice de bază ale celulelor [ 7 ]. Deficitul de zinc este o problemă la nivel mondial, cu aproximativ 2 miliarde de persoane supuse unor diete cu deficit de zinc [ 7 , 8 ]. Deficiența de zinc nu se limitează la țările în curs de dezvoltare, deoarece există și în lumea industrializată, în principal la vârstnici [ 9 , 10 ]. La adulții sănătoși normali, concentrația plasmatică de zinc este de obicei 14-23 μmol / L (0,9-1,5 μg / ml) [ 11 ].

Factorii de risc asociați cu deficitul de Zn au fost bine raportați în literatura de specialitate [ [12] , [13] , [14] ]. Deficitul de zinc poate provoca un dezechilibru atât în ​​sistemul imunitar înnăscut, cât și în cel adaptiv, cu deficiență severă care duce la infecții, tulburări ale pielii, tulburări gastro-intestinale, pierderea în greutate, întârzierea creșterii și hipogonadism masculin, printre alte simptome [ [14] , [15] , [ 16] , [17] ]. S-a constatat că nivelurile scăzute de zinc afectează funcția diferitelor tipuri de celule imune, inclusiv macrofage, neutrofile, mastocite și celule dendritice [ 11 , 18]. Zincul este, de asemenea, esențial pentru dezvoltarea, diferențierea și activarea celulelor T [ 19 ]. Prin urmare, deficiența de zinc poate avea ca rezultat afectarea producției, activării și maturării celulelor ucigașe naturale (imunitate înnăscută mediată de celule), a celulelor T (imunitate adaptivă mediată de celule) și a celulelor B (imunitate adaptivă umorală) [ 5 ].

Deficitul de zinc, care este raportat frecvent la vârstnici, scade funcția imunitară, scade rezistența la agenții patogeni invadatori și crește riscul de a contracta pneumonie [ 20 , 21 ]. Deficitul de zinc apare de asemenea frecvent la pacienții cu boli cardiovasculare, boli pulmonare cronice, diabet sau obezitate [ 22 , 23 ].

Zincul își exercită activitatea antiinflamatorie prin inhibarea activării și semnalizării NF-κB și prin controlul funcțiilor de reglare a celulelor T (Treg) [ 12 ]. Suplimentarea cu zinc determină înclinarea celulelor Th17 pro-inflamatorii către celulele Treg antiinflamatoare [ 24 ]. Suplimentarea cu zinc inhibă NF-κB prin expresia proteinei A20, rezultând în suprimarea TNF-α, IL-1β, IL-6, IL-8, IL-12, IL-18, IFN-γ, iNOS, COX-2 , GM-CSF [ 12 , 25 ].

Macrofagele, neutrofilele și celulele T sunt activate prin creșterea citokinelor, inclusiv IL-1, IL-6 și TNF-α, ducând deseori la sindromul de detresă respiratorie acută (ARDS) [ 26 ]. Nivelurile de IL-6, IL-8 și TNF-α sunt crescute la persoanele în vârstă cu deficit de zinc, precum și la persoanele obeze [ 17 , 27 ], iar suplimentarea cu zinc s-a dovedit a reduce aceste niveluri [ 10 ].

Când nivelurile de specii reactive de oxigen (ROS) sunt crescute, așa cum se întâmplă frecvent în deficiența de zinc, rezultă daune oxidative. Suplimentarea cu zinc scade producția de ROS și aceasta are rezultate benefice, în special la vârstnici și în diabetul zaharat [ 13 ].

Au fost prezentate o serie de analize cuprinzătoare ale zincului și implicarea acestuia în îmbătrânirea, virusurile de tip COVID și comorbiditățile [de exemplu, Ref. [ 27 , 28 ]]. Suficiența zincului este vitală pentru reducerea factorilor de risc asociați cu COVID-19, cum ar fi obezitatea, diabetul, bolile cardiovasculare, bolile pulmonare și îmbătrânirea [ 12 , 29 ]. Suplimentarea fiziologică a Zn la îmbătrânire și la bolile degenerative legate de vârstă corectează defectele imune și reduce recăderea infecției [ 30 ].

Una dintre problemele suplimentării cu zinc a fost variabilitatea biodisponibilității zincului în celule. S-a constatat că creșterea nivelurilor intracelulare de zinc folosind ionofori precum piritionul poate reduce în mod eficient replicarea unei varietăți de viruși, inclusiv replicarea SARS-CoV [ 31 ]. Din păcate, piritionul nu este recomandat pentru utilizare internă, în timp ce este eficient și sigur atunci când este utilizat local. Alți ionofori de zinc dovediți includ clorochina și hidroxiclorochina (HCQ) [ 12 , 32 , 33 ], disulfiram [ 33 ], quercetina și epigalocatechin-galatul [ 34 ] și zincoforina [ 35 ]. În plus, Rizzo [ 36] a prezentat o justificare solidă pentru ca ivermectina să fie un ionofor pentru zinc. Sunt planificate sau în curs de desfășurare o serie de studii clinice care se bazează pe HCQ și zinc și ivermectină și zinc, împreună în unele cazuri cu un antibiotic precum azitromicina sau doxiciclina [ 37 ]. Interesant este faptul că studiile HCQ se bazează fundamental pe testarea dacă zincul completează HCQ și nu dacă HCQ completează zincul care ar fi de așteptat dacă HCQ ar fi recunoscut ca un ionofor pentru zinc. Un comentariu similar se aplică ivermectinei. Ultimul rezumat al studiilor în curs la momentul pregătirii acestui manuscris a fost cel al lui Pal și colab. [ 38 ].

Zincul este, de asemenea, cunoscut pentru capacitatea sa de a modula imunitatea antivirală și antibacteriană [ 12 ]. Proprietățile antibacteriene ale zincului sunt bine demonstrate împotriva S. pneumoniae [ 12 ]. Mai mult, zincul are capacitatea de a reduce riscul co-infecției bacteriene prin îmbunătățirea funcției pulmonare prin eliminarea mucociliară și protejarea funcției barierei pulmonare.

Zincul inhibă ARN-polimeraza SARS-CoV și, prin urmare, capacitatea sa de replicare [ 17 ]. Zincul a fost, de asemenea, postulat ca un stabilizator al membranelor celulare care ar putea ajuta la blocarea intrării virusului în celule [ 39 ]. În acest context, zincul scade activitatea enzimei de conversie a angiotensinei 2 (ACE2) care este necesară pentru legarea cu SARS-CoV-2 pentru intrarea celulelor [ 12 ]. Wessels și colegii de muncă [ 40] a concluzionat că zincul are mai multe funcții în inhibarea intrării virale în celulele gazdă și a activității: prevenirea fuziunii cu membrana gazdă, inhibarea polimerazei virale și replicarea ulterioară, afectarea traducerii și procesării proteinelor, blocarea eliberării particulelor virale și destabilizarea învelișului viral. S-a demonstrat că deficiența de zinc crește scurgerea epiteliului căilor respiratorii utilizând un model ex vivo [ 41 ], spre deosebire de suplimentarea cu zinc care s-a dovedit că îmbunătățește integritatea pulmonară la un model de șoarece prin recrutarea scăzută a neutrofilelor la nivelul plămâni [ 42 ].

Conform NIH, Biblioteca Națională de Medicină a SUA, nu există studii formale care să evalueze zincul pentru gestionarea COVID-19 care au fost finalizate și raportate până în prezent, deși în prezent sunt înregistrate mai multe studii pentru a testa zincul ca parte a diferitelor regimuri de tratare a COVID- 19 [ 37 ] Cu toate acestea, s-a constatat că suplimentarea cu zinc are un efect benefic asupra pacienților cu COVID-19 [ 43 , 44 ]. Un studiu efectuat pe 47 de pacienți cu COVID-19 a arătat că 57% dintre pacienții cu COVID-19 erau deficienți în zinc. Acești pacienți cu deficit de zinc au dezvoltat mai multe complicații și au crescut mortalitatea decât cei cu nivel normal de zinc45 ].

În ceea ce privește vârstnicii, suplimentarea cu 45 mg zinc elementar pe zi a redus semnificativ incidența infecției la subiecții vârstnici, variind de la 55 de ani la 87 de ani [ 10 ]. Consumul de aproximativ 25-40 mg de zinc pe zi este accesibil și este mai puțin probabil să inducă toxicitate umană, întrucât mai mult de 200-400 mg pe zi de zinc poate induce evenimente adverse 46 ].Mergi la:

3. Acizi grași polinesaturați ω-3 (PUFA)

omega -3 acizi grasi / PUFA nu au primit atenția pe care o merită în prevenirea și tratamentul COVID-19 și comorbiditățile asociate. FA-3 PUFA au proprietăți care sunt semnificativ diferite de cele ale zincului, vitaminei D și magneziului, proprietăți care sunt totuși ideale pentru prevenirea și tratamentul COVID-19, obezitatea și diabetul, bolile cardiovasculare, bolile pulmonare cronice și cancerul și îmbunătățirea funcția imună și efectele antiinflamatorii la îmbătrânirea generală [ 1 , [47] , [48] , [49] ].

SARS-CoV și SARS-CoV-2 sunt foarte asemănătoare și sunt ambii virusuri învăluite care pot duce la dezvoltarea ARDS. S-a demonstrat că PUFA ω-3, în special acidul eicosapentaenoic (EPA) și acidul docosahexaenoic (DHA), inactivează virusurile învelite, precum și inhibă proliferarea unei game de organisme microbiene [ 50 ].

Eficacitatea acidului α-linolenic (ALA) în tratarea inflamației și a deficienței imune s-a dovedit în mai multe cazuri a fi similară cu cea a DAH și EPA, deși de obicei potența este în ordinea DHA> EPA> ALA [de exemplu, 49,51]. S-a raportat că uleiul bogat în ALA a provocat o modulare imună în cancer similară cu cea din uleiul de pește, care a fost însoțită de o scădere a producției de macrofage de citokine pro-inflamatorii (de exemplu, TNF-α și IL-6) [ 52 ] .

FA-3 PUFA au un rol important în reglarea macrofagelor deoarece modulează producția de citokine și chemokine de către macrofage; schimbă capacitatea de fagocitoză a macrofagelor și transformă macrofagele de la pro-inflamatorii (macrofage de tip M1) la antiinflamatoare (M2) de tip [ 53 ]. FA-3 PUFA și metaboliții lor au un efect modulant asupra neutrofilelor, deoarece afectează migrația neutrofilelor, capacitatea fagocitară și producția de ROS [ 53 ].

Weill și colegii de muncă [ 51 ] au descris acțiunea PUFA ca având două faze în inhibarea inflamației: o fază de promovare în care FA-6 PUFA, cum ar fi AA, conduc la sinteza leucotrienelor și prostaglandinelor pro-inflamatorii prin acțiunea ciclooxigenazelor, lipoxigenaze și citocrom P450; și o fază de rezoluție în care PUFA ω-3 sunt precursori ai unor mediatori activi puternici precum rezolvine, maresine și protectine care inhibă sinteza citokinelor pro-inflamatorii prin reglarea descendentă a căii NF-κB. Resolvinele provin din EPA și DHA, iar proteininele provin din DHA; au efecte antiinflamatorii prin limitarea infiltrării leucocitelor în țesuturile infectate [ 51 , 54]. Maresinii provin din DHA și, de asemenea, rezolvă inflamația [ 51 , 55 ].

FA-3 PUFA se remarcă prin influența lor asupra proprietăților plutelor lipidice, care la rândul lor îndeplinesc un rol important în funcționarea prospectului exterior al membranelor celulare. FA-3 PUFA reglează proprietățile membranei, cum ar fi fluiditatea membranei și transducția semnalului [ 1 ]. S-a demonstrat că SARS-CoV se bazează pe integritatea plutei lipidice pentru intrarea virusului în celulele gazdă [ 56 , 57 ]. Receptorul de intrare pentru coronavirus, ACE2, este situat în plute lipidice. Endocitoza mediată de receptorul ACE2 este urmată de activarea proteinei spike din învelișul viral de către serin proteaza transmembranară 2 (TMPRSS2) care se află adiacent receptorului ACE2 [ 51].]. S-a demonstrat că FA-3 PUFA inhibă intrarea celulară prin ACE2 și activitatea enzimatică a TMPRSS2 [ 51 , 58 ]. Efectul perturbator al PUFA-urilor ω-3 asupra integrității plutelor lipidice a fost descris înainte [ 1 ], unde PUFA-urilor ω-3 au fost descrise ca cauzând perturbări ale plutei lipidice datorită afinității foarte slabe a PUFA-urilor ω-3 pentru colesterol. Prin urmare, este clar că FA-3 PUFA au multiple efecte inhibitoare asupra intrării virale în celulele gazdă.

Au existat o serie de studii clinice care confirmă efectele anti-inflamatorii și de răspuns imun ale suplimentării cu PUFA ω-34 , 5 , [59] , [60] , [61] ]. Potrivit NIH, Biblioteca Națională de Medicină a SUA, nu există studii formale care să evalueze FA-3 PUFA pentru managementul COVID-19 care au fost finalizate și raportate până în prezent, deși în prezent sunt înregistrate patru studii pentru a testa FA-3 PUFA ca parte a diferite regimuri [ 37 ].Mergi la:

4. Vitamina D

Vitamina D obținută din lumina soarelui sau din surse dietetice este catalizată de vitamina D-25-hidroxilază din ficat în 25-hidroxivitamină D 3 (25 (OH) D), principala formă circulantă a vitaminei D. 25 (OH) D este biologic inertă până când este hidroxilat de enzima 1α-hidroxilază (CYP27B1) în rinichi până la forma activă 1α, 25-dihidroxivitamină D 3 (calcitriol, 1α, 25 (OH) 2 D 3 ) [ 62 ].

Calcitriolul are efecte imunoreglatorii și antiinflamatorii importante pe care le exercită prin interacțiunea cu receptorul de vitamina D (VDR). Complexul calcitriol / VDR poate interacționa cu diferiți factori de transcripție a genelor care controlează răspunsurile inflamatorii [ 63 ]. VDR și CYP27B1 sunt exprimate în multe tipuri de celule imune, inclusiv limfocite, monocite / macrofage, celule dendritice, celule T și B [ 64 , 65 ] și pe celule epiteliale pulmonare. Aceste celule imune pot converti 25 (OH) D în calcitriol biologic activ [ 63 , 66]. Complexul calcitriol / VDR determină transcrierea peptidelor antimicrobiene catelicidine și defensine. Catelicidinele perturbă membranele celulare bacteriene, precum și virusurile învelite, cum ar fi SARS-CoV-2, în timp ce defensinele promovează chimiotaxia celulelor inflamatorii prin permeabilitatea capilară crescută [ 65 , 67 ].

Sinteza vitaminei D în piele este controlată de anotimp, de timpul expunerii în timpul zilei și de latitudine [ 68 , 69 ]. Vitamina D este slab sintetizată deasupra (spre nord) și sub (spre sud) de 35 ° latitudine în lunile de iarnă [ 70 ]. Blocările, implementate pentru a minimiza răspândirea COVID-19, sunt, prin urmare, dăunătoare sintezei vitaminei D, deoarece persoanele sunt împiedicate să iasă din casele lor și să absoarbă soarele, ceea ce are un efect cumulativ în lunile de iarnă, când COVID-19 este mai răspândit. . Populațiile negre și asiatice produc mai puțină vitamină D ca urmare a unui conținut mai ridicat de melanină pe piele decât cele cu pielea albă [ 71 ]. Expunerea excesivă la lumina soarelui este cauza principală a cancerului de piele [ 72]. Cu toate acestea, există o incidență crescută a cancerului de piele și a altor tipuri de cancer în țările cu niveluri scăzute de lumină solară, comparativ cu țările cu niveluri mai ridicate de lumină solară pe tot parcursul anului [ 73 , 74 ], susținând propunerea că lumina soarelui este benefică pentru sinteza vitaminei D și prevenirea ulterioară a cancerelor. Au existat o serie de rapoarte în care sa demonstrat că expunerea scăzută la soare are un impact negativ asupra unei serii de probleme de sănătate [ [75] , [76] , [77] ]. Avantajul expunerii la soare în furnizarea vitaminei D trebuie să fie echilibrat în mod sensibil împotriva riscului potențial de cancer de piele din cauza expunerii excesive la soare [ 78 ].

În stadiile incipiente ale inflamației acute, vitamina D inhibă proliferarea celulelor Th1 și Th17 și eliberarea lor anormală de IFN-γ, TNF-α, IL-1, IL-2, IL12, IL-23 și IL-17, IL -21 [ 65 ]. În timpul fazei de rezoluție a inflamației, vitamina D mediază diferențierea celulelor Th2 și eliberarea citokinelor lor antiinflamatorii (IL-4 și IL-10), evitând leziunile organelor care ar putea fi cauzate de un răspuns imun excesiv [ 65].]. Vitamina D are proprietăți antiinflamatorii puternice care joacă un rol important în controlul funcției imune în infecția pulmonară; de exemplu, inhibă efectele TNF-α, inhibă activitatea NF-κB în celulele imune, inhibă activarea inflammasomilor și, prin urmare, eliberarea IL-1β și scade expresia IL-6, un factor important al -numită „furtună de citokine” [ 65 , 79 ].

Răspunsul imunitar acționează împreună cu răspunsul inflamator. Sistemul imunitar înnăscut acționează ca prima linie de apărare împotriva agenților patogeni invadatori, cum ar fi virușii. Calcitriolul sporește această apărare prin recrutarea neutrofilelor, monocitelor / macrofagelor și a celulelor dendritice care omoară și elimină agenții patogeni virali, inițind în cele din urmă răspunsul imun adaptiv. Acest răspuns poate fi hiperactiv rezultând furtuna de citokine. Calcitriolul inhibă acest răspuns imun cronic prin reglarea descendentă a receptorilor asemănători cu taxele (TLR) care identifică inițial agenții patogeni virali și inhibă căile de semnalizare TNF-α / NF-κB și IFN-γ. Calcitriolul deplasează profilul celulelor T de la formele pro-inflamatorii Th1 și Th17 la formele antiinflamatorii Th2 și respectiv Treg [ 80]]. Tregele oferă o apărare majoră împotriva inflamației, eliberând citokine antiinflamatorii IL-10 și TGF-β. Nivelurile de Treg sunt semnificativ scăzute în boala COVID-19 severă, spre deosebire de nivelurile ridicate de Treg corelate cu nivelurile reduse de boli virale [ 81 ].

Celulele ucigașe naturale sunt celule imune înnăscute și se știe că posedă o activitate antivirală puternică, precum și activitate anticancerigenă [ 82 ]. Numărul și activitatea celulelor ucigașe naturale s-au dovedit a fi reduse sub valorile normale la pacienții cu COVID-19 și s-a constatat că vitamina D crește activitatea celulelor ucigașe naturale [ 82 ].

Deși există inconsecvență în date, este evident că deficitul de vitamina D este influențat în creșterea riscului de infecții ale tractului respirator acut [ 83 ], în special atunci când se ia în considerare scăderea sintezei naturale a vitaminei D în timpul iernii, când infecțiile respiratorii acute sunt cele mai prevalent. Ali [ 84 ] a efectuat un studiu al cazurilor și mortalității COVID-19 în 20 de țări europene, constatând că starea vitaminei D se corela negativ cu cazurile COVID-19, dar nu și cu mortalitatea. S-a arătat, de asemenea, eficiența cantității de vitamina D în reducerea riscului de infecții acute ale tractului respirator viral și pneumonie. Rezultate similare au fost raportate de Kara și colegii de muncă [ 85], care a discutat, de asemenea, legătura dintre latitudine, temperatură și umiditate și sezon pe infecțiile tractului respirator viral.

Allegra și colegii de muncă [ 86 ] au raportat despre deficiența și suplimentarea unei game de vitamine, inclusiv vitamina D, în special în corelarea hipovitaminozei cu riscul de a contracta COVID-19 și a mortalității asociate. Ei au raportat că au existat rezultate pozitive și nedeterminate în analiza lor de studii multiple. Nivelurile de vitamina D au fost reduse în special la populațiile îmbătrânite din Italia, Spania și Elveția, care au fost cele mai sensibile populații în raport cu infecția cu SARS-CoV-2 [ 87 ]. În plus, Annweiler și colegii de muncă [ 88] a analizat o serie de rapoarte cu concluzia că s-au găsit corelații inverse între 25 (OH) D niveluri la pacienți și incidența și mortalitatea COVID-19. Alte rapoarte au acoperit, de asemenea, influența vitaminei D asupra rezultatelor pacienților cu COVID-19, constatând în mod tipic că suplimentarea cu vitamina D duce la un rezultat îmbunătățit pentru acești pacienți și că deficiența de vitamina D crește riscul și susceptibilitatea pentru boala COVID-19 severă și mortalitate 69 , 84 , 87 , [89] , [90] , [91] , [92] , [93] , [94] , [95] , [96] , [97] ,[98] , [99] ].

Într-o altă analiză, Lau și colegii de muncă [ 100 ] au constatat că deficiența de vitamina D a fost foarte răspândită la pacienții cu COVID-19 severă, care s-a corelat la rândul său cu obezitatea, sexul masculin, vârsta avansată, concentrația populației în climatul nordic, coagulopatia și imunitatea. disfuncție. O altă meta-analiză a constatat că deficiența de vitamina D a crescut riscul de infecții severe și mortalitate a bolnavilor critici [ 101 ]. Deficiența vitaminei D a fost susținută în continuare pentru a crește riscul de a contracta osteoporoză, cancer, diabet, scleroză multiplă, hipertensiune și boli inflamatorii și imunologice [ 102 ]. Deși vitamina D și beneficiile suplimentării în prevenirea cancerului au fost discutate anterior [ 1], este de remarcat faptul că un număr de cercetători au demonstrat că riscul de incidență și deces al cancerului este redus cu suplimentarea cu vitamina D [de exemplu, Ref. [ [103] , [104] , [105] ]]. Mecanismul de acțiune al vitaminei D în reducerea riscului de cancer a fost, de asemenea, abordat într-o serie de recenzii [de exemplu, Ref. [ [106] , [107] , [108] ]].

S-a specificat că un nivel rezonabil de 25 (OH) D în ser este de cel puțin 30 ng / mL (75 nmol / L) [ 93 , 109 ], cu o preferință pentru 40-60 ng / mL (100-150 nmol / L) pentru a asigura o sănătate bună, în special la vârstnici [ 69 , 110 ].

Pe scurt, vitamina D împiedică intrarea și replicarea SARS-CoV-2, reduce nivelul citokinelor pro-inflamatorii, crește nivelul citokinelor antiinflamatorii și crește producția de peptide antimicrobiene naturale [ 111 ].Mergi la:

5. Magneziu

Magneziul este un element esențial în funcționarea biologică optimă a corpului uman. Magneziul este cel de-al doilea cation intracelular din corpul uman și este fundamental pentru fosforilarea oxidativă, glicoliza, transcrierea ADN și sinteza proteinelor [ 112 ]. Nivelurile de magneziu nu sunt analizate în mod obișnuit în practica clinică [ 113 ] ceea ce înseamnă că a existat o raportare limitată a corelațiilor de magneziu pentru pacienții cu COVID-19 [ 113 , 114 ]. În ciuda acestui fapt, au existat unele rapoarte privind starea magneziului mai mică în cazurile severe de COVID-19 decât în ​​cazurile mai puțin severe [ [115] , [116] , [117]]. Pe de altă parte, au existat o serie de recenzii excelente despre magneziu și esențialitatea acestuia în menținerea funcției imune corespunzătoare și controlul stresului oxidativ și al inflamației de grad scăzut, în special la vârstnici [de exemplu, Refs. [ 112 , [118] , [119] , [120] , [121] , [122] ]].

Magneziul este esențial pentru activarea vitaminei D [ 122 , 123 ]. Prin urmare, magneziul și vitamina D sunt importante atât pentru funcția imunitară, cât și pentru stabilitatea celulară și este necesară suficiența ambelor pentru a contracara efectele dăunătoare ale dezvoltării COVID-19 [ 122 ].

Deficiența de magneziu este frecventă și s-a estimat că la o populație dată până la 30% poate avea un deficit de magneziu [ 122 ]. Magneziul este depozitat în principal în os (> 50%), cu doar ∼1% în ser [ 124 ]. Homeostazia cu magneziu este menținută prin absorbția din tractul gastro-intestinal, excreția renală și schimbul din os. Estimările privind suficiența magneziului sunt, prin urmare, dubioase dacă se bazează doar pe analiza serică [ 118 ]. Cu toate acestea, 0,75 mmol / L a fost sugerat ca nivel seric sub care există deficiența de magneziu [ 125 ] și 0,85 mmol / L ca nivel necesar pentru suficiența magneziului [ 118 ].

Magneziul are efecte antiinflamatorii și anti-oxidative, precum și asigură vasodilatație și neuroprotecție [ 120 ]. Magneziul suprimă NF-κB, expresia IL-6 și TNF-α și nivelurile de proteină C reactivă (CRP) [ 6 , 121 , 126 ]. Prin urmare, magneziul reglează sistemul cardiovascular, digestiv, neurologic și respirator, contribuind semnificativ la menținerea sănătății umane normale [ 120]. ]. În acest context, aporturile dietetice de magneziu se corelează negativ cu bolile cardiovasculare, bolile renale și diabetul [ 118 , 127 ].Mergi la:

6. COVID-19

SARS-CoV-2 este un virus insidios care cauzează boala COVID-19. Există multe asemănări între SARS-CoV-2 și cel mai recent coronavirus SARS-CoV. Pentru a prezenta esențialitatea generală a asigurării suficientului de zinc, FA-3 PUFA, vitamina D și magneziu, vor fi discutate etapele cheie care contribuie la incursiunea SARS-CoV-2 și la dezvoltarea COVID-19. Acestea sunt intrarea virală, implicarea sistemului imunitar și a inflamației și furtuna ulterioară de citokine care provoacă eventuala morbiditate și mortalitate asociată cu COVID-19.

6.1. Intrare virală

SARS-CoV-2 intră în celulele gazdă prin receptorul enzimei de conversie a angiotensinei 2 (ACE2), în același mod ca SARS-CoV [ 128 ]. Proteina spike a SARS-CoV-2 se leagă de ACE2, permițând endocitoza, care este urmată de activarea proteinei S în învelișul viral utilizând serina protează 2 transmembranară (TMPRSS2), o enzimă legată de membrană situată adiacent receptorului ACE2 [ 51 ]. În același timp, ADAM17 (dezintegrină și metaloproteinază domeniu 17) „sheddase” este activată de complexul SARS-CoV-2-ACE2 care, la rândul său, duce la eliminarea ectodomeniului ACE2. Activarea sheddasei ADAM17 poate provoca, de asemenea, scindarea TNF-α și IL-6, precum și a altor mediatori pro-inflamatori [ 128]. Trebuie remarcat faptul că afinitatea de legare ACE2 a proteinei S a SARS-CoV-2 este de 10 până la 20 de ori mai mare decât cea a SARS-CoV [ 129 ], sugerând că SARS-CoV-2 este semnificativ mai infecțioasă decât predecesorul său SARS-CoV.

Echilibrul sistemului renină-angiotensină (RAS) este vital în controlul intrării celulelor gazdă a virusurilor, precum și a comorbidităților asociate, deoarece RAS reglează tensiunea arterială. RAS este în esență un echilibru între ACE și ACE2, așa cum se ilustrează înFig. 1. Calea ECA necesită conversia angiotensinei (Ang) I la Ang II și legarea ulterioară la receptorul AT1 (AT1R), care are consecințe cumplite precum vasoconstricție, proliferare, inflamație și apoptoză [ 91 ]. Calea alternativă implică conversia Ang I și Ang II la angiotensină 1-9 și respectiv angiotensină 1-7, prin acțiunea enzimatică a ACE2. Angiotensina 1-9 este, de asemenea, convertită în angiotensina 1-7 de către ECA.

Fig. 1

Fig. 1

Căi RAS care arată echilibrul între ACE și ACE2.

ACE2 este necesar pentru intrarea virală în celulele gazdă, dar este de dorit și pentru conversia Ang I și Ang II în angiotensine 1-9 și respectiv 1-7, ducând la activarea receptorului Mas. Fig. 1arată că la rândul său, aceasta va provoca o patologie pozitivă în ceea ce privește vasodilatația și efecte antiinflamatorii, anti-oxidative și anti-fibroze [ 130 ].

Au existat discuții destul de extinse despre acțiunile contradictorii ale ACE2 în intrarea virală în celulele gazdă și reglarea acesteia a RAS, unde modularea RAS are un efect patologic pozitiv. Receptorul ACE2 este exprimat în țesuturile pulmonare și într-o serie de alte țesuturi, cum ar fi nasul, inima, endoteliul, rinichii și intestinul [ 131 , 132 ]. S-a stabilit acum că odată ce virusul se leagă de ACE2, îl elimină efectiv din acțiuni ulterioare, promovând activitatea ACE, care la rândul său duce la producerea mai multor Ang II. Înlăturarea ACE2 din acțiune face ca virusul să aibă o cursă liberă, permițându-i să prolifereze, ducând la creșterea morbidității.

S-a constatat că expresia ACE2 este mai mică la bărbați decât la femei și mai mică la adulții mai în vârstă decât la tineri, ceea ce ar putea explica incidența mai mare a deceselor la bărbații vârstnici cu COVID-19 [ 130 , 133 ]. Această categorie de pacienți are un prognostic mai prost atunci când sunt implicați și cu comorbidități precum boli cardiovasculare, diabet, hipertensiune și obezitate, toate acestea fiind stimulate de RAS [ 130 ]. Prin urmare, este important să se îmbunătățească expresia ACE2 și activitatea acestuia și, în același timp, să se asigure că intrarea virusului în celulele gazdă este inhibată. Acest lucru poate fi realizat asigurându-se că nivelurile suficiente de zinc, FA-3 PUFA, vitamina D și magneziu sunt menținute în orice moment în timpul prevenirii și tratamentului COVID-19.

Trebuie remarcat faptul că, deși nu există studii raportate privind efectul zincului asupra ACE2 pentru intrarea celulelor gazdă, zincul protejează corpul uman de intrarea virusului prin eliminarea mucociliară îmbunătățită a virusurilor, precum și prin conservarea barierelor tisulare [ 42 ]. S-a recunoscut că expresia îmbunătățită a ACE2 de către calcitriol ameliorează leziunile pulmonare acute induse de SARS-CoV-2 [ [134] , [135] , [136] ]. Calcitriolul suprimă, de asemenea, activitatea reninei și, prin urmare, reduce generarea de angiotensină II, care determină vasoconstricție pulmonară [ 134 ]. După cum sa menționat mai sus, legarea ACE2 și a intrării celulare sunt inhibate de PUFA ω-3 [ 51 , 58 ].

6.2. Sistemul imunitar

Sistemul imunitar oferă două linii de apărare: imunitatea înnăscută și adaptativă. Imunitatea înnăscută este prima linie de apărare, bazată pe bariere mucoase, monocite, macrofage, neutrofile, eozinofile și celule dendritice. Imunitatea adaptivă este procesul prin care se creează memoria imunologică la un antigen specific, dar mai lent decât imunitatea înnăscută. Celulele dendritice funcționează și ca celule care prezintă antigen, activând limfocitele B și T ale răspunsului imun adaptiv [ 53 ].

Mastocitele sunt prezente în submucoasa cavității nazale și a căilor respiratorii, unde oferă o barieră de protecție împotriva microorganismelor și pot fi activate de virus [ 29 ]. Când sunt activate, mastocitele eliberează inițial molecule inflamatorii preformate, cum ar fi histamina și proteazele, în timp ce activarea târzie activează sinteza și eliberarea membrilor familiei pro-inflamatorii IL-1, inclusiv IL-1, IL-6 și IL-33 [ 137 ] . Prin urmare, mastocitele eliberează în mod normal o gamă largă de mediatori proinflamatori. Vitamina D deviază caracteristicile de eliberare ale mastocitelor pentru a produce și excreta IL-10 fără a induce degranularea mediatorilor pro-inflamatori [ 138]. IL-10 este o citokină antiinflamatorie importantă care inhibă producția de citokine pro-inflamatorii, cum ar fi IFN-γ, IL-2, IL-3, TNF-α și GM-CSF [ 139 ].

Macrofagele sunt fundamentale pentru sistemul imunitar înnăscut, deoarece elimină agenții patogeni invadatori: recunosc agenții patogeni invadatori prin utilizarea modelelor moleculare asociate agentului patogen, care sunt la rândul lor recunoscute de TLR-uri prezente pe suprafața lor. Macrofagele fagocitează apoi agentul patogen invadator și în același timp secretă ROS și o gamă largă de citokine și chemokine pentru a recruta și activa alte tipuri de celule imune atât din sistemul imunitar înnăscut, cât și din cel adaptiv [ 53 ]. Cele mai dăunătoare citokine eliberate de macrofage atunci când sunt supraactivate sunt IL-1β, IL-6 și TNF-α [ 140 ].

Eozinofilele eliberează mediatori proinflamatori, inclusiv proteine ​​cationice degranulate, eicosanoide sintetizate și citokine [ 141 ]. Neutrofilele sunt recrutate la locul inițial al inflamației, unde au, de asemenea, un rol în îndepărtarea agenților patogeni. Neutrofilele pot interacționa, de asemenea, cu sistemul imunitar adaptiv, promovând celulele T naive pentru trecerea în celulele T helper 1 (Th1) [ 53 ].

Celulele T sunt limfocite derivate din timus. Celulele T pot fi clasificate în celule ajutătoare (Th) care reglează funcția altor celule imune și celule T citotoxice care distrug celulele infectate cu virus. Celulele Th se diferențiază în celule Th1, Th2, Th17 și Th22. Celulele Th1 secretă IFN-γ; Celulele Th2 secretă IL-4; Celulele Th17 secretă IL-17A, IL17-F, IL-21 și IL-22; iar celulele Th22 secretă IL-22. Celulele Th1 și Th17 sunt pro-inflamatorii, în timp ce celulele Th2 sunt în esență antiinflamatoare [ 53 ]. Celulele T de reglementare (Tregs) suprimă activarea altor celule imune, cum ar fi celulele Th1, celulele Th17, celulele B, macrofagele sau celulele dendritice, prin secreția de IL-10 și TGF-β [ 53 ].

Impactul oferit de diferitele celule ale sistemului imunitar care contribuie la virusurile SARS-CoV și SARS-CoV-2 este dat în tabelul 1. Se poate observa că eliberarea de citokine și chemokine este potențial imensă, ducând la potențialul de producție al furtunii de citokine.

tabelul 1

Mediatori eliberați / activați în celulele din SARS și COVID-19.

Tipul celuleiMediatori eliberați / activațiReferințe
MastociteleHistamină, triptază, NF-κB, IL-1α / β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, IL-16, IL-17, IL-18, IL-25, IL-33, TNF-α, IFN-γ, TGF-β, CCL2, CCL3, GM- CSF, VEGF, PDGF, SCF, PGE2, ROS, TLR2, c-Kit29 , [142] , [143] , [144] , [145] , [146] ]
Monocite / macrofageNF-κB, TNFα, IL-1α / β, IL-1RA, IL-6, IL-8, IL-10, IL-12, IFN-γ, TGF-β, ROS, TLR2, TLR46 , 110 , [147] , [148] , [149] , [150] ]
EozinofileIL-1α, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-10, IL-11, IL-12, IL-13, IL-16, IL- 18, IL-25, TNF-α, IFN-γ, TGF-α / β, VEGF, GM-CSF145 , [151] , [152] , [153] , [154] ]
NeutrofileIL-1α / β, IL-1RA, IL-3, IL-4, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-16, IL-17, IL-18, IL-23, Th1 / Th2, TGF-α / β, IFN-α, IFN-γ, TNF-α, G-CSG, GM-CSF, SCF, FGF, VEGF, CCL2, ROS, TLR2, TLR4[155] , [156] , [157] , [158] ]
Celulele dendriticeIL-6, IL-10, IL-12, TNF-α, CCL3, RANTES, IP-10, CCL2110 , 142 , 159 ]
Th1IFN-y, IL-1β, IL-2, IL-12, TNF-a110 , 148 ]
Th2TGF-p, IL-4, IL-5, IL-9, IL-10, IL-13110 , 148 ]
Th17IL-17A, IL-17F, IL-21, IL-22110 , 160 ]
TregIL-10, TGF-p53 , 110 ]

masa 2 prezintă celulele imunitare cheie și regulatorii care contribuie la funcția imunitară și inflamație, împreună cu efectele corective ale zincului, FA-3 PUFA, vitamina D și magneziu asupra fiecăreia dintre aceste celule imune și regulatori atunci când funcția imună și inflamația sunt supra-activate.

masa 2

Inhibarea (↓) / activarea (↑) a celulelor / regulatorilor celulelor imune.

Celula / regulatorulZincω-3 PUFA-uriVitamina DMagneziu
Mastocitele [ 161 , 162 ] [ 144 , 163 , 164 ] [ 138 , [165] , [166] , [167] ] [ 168 , 169 ]
Monocite [ 170 , 171 ] [ 172 , 173 ] [ 147 ] [ 174 , 175 ]
Macrofage [ 176 ] [ 177 , 178 ] [ 179 , 180 ] [ 175 , 181 , 182 ]
Neutrofile [ 171 , 183 , 184 ] [ 185 , 186 ] [ 187 , 188 ] [ 181 , 189 ]
Celulele dendritice [ 190 , 191 ] [ 192 , 193 ] [ 63 , 194 , 195 ] [ 196 ]
Eozinofile [ 171 , 197 , 198 ] [ 172 , 185 , 199 ] [ 200 , 201 ] [ 202 ]
Raportul Th1 / Th2 [ 203 , 204 ] [ 205 , 206 ] [ 207 ] [ 208 ]
Th17 [ 24 , [209] , [210] , [211] ] [ [212] , [213] , [214] ] [ 215 , 216 ]
Treg [ 24 , 211 , 217 , 218 ] [ 213 , [219] , [220] , [221] ] [ [222] , [223] , [224] ]
Inflammasome / caspase-1 [ 225 , 226 ] [ [227] , [228] , [229] ] [ 79 , [230] , [231] , [232] ] [ 233 , 234 ]
NF-κB [ 12 , 17 , 25 , 235 ] [ 132 , 236 , 237 ] [ 79 , [238] , [239] , [240] ] [ 121 , 174 , 241 ]

– nu indică nicio referință literară.

6.3. Furtuna de citokine

Eliberarea necontrolată de celule imune și eliberarea excesivă de citokine pro-inflamatorii a fost denumită „furtuna de citokine”. Furtuna de citokine se prezintă în mod normal ca inflamație sistemică, stres oxidativ excesiv și insuficiență multiplă a organelor [ 29 , 51 ], rezultând predominant ARDS. Cheia contracarării furtunii de citokine constă în contracararea inflamației excesive. Acest lucru poate fi abordat în mare măsură prin menținerea suficientă a nutrienților esențiali zinc, FA-3 PUFA, vitamina D și magneziu.Tabelul 3oferă citokinele proinflamatorii cheie și alți mediatori implicați într-o furtună de citokine, împreună cu efectele inhibitoare ale zincului, FA-3 PUFA, vitaminei D și magneziului. Se poate observa că acești patru nutrienți sunt pe scară largă eficienți în inhibarea cheilor mediatori proinflamatori ai furtunii de citokine.

Tabelul 3

Mediatori proinflamatori cheie într-o furtună de citokine.

MecanismeEfectul zincului asupra mediatorului [Refs]Efectul FA-3 PUFA asupra mediatorului [Refs]Efectul vitaminei D asupra mediatorului [Refs]Efectul magneziului asupra mediatorului [Refs]
TNF-a [[ 9 , 235 ]] [ 177 , [242] , [243] , [244] ] [ [245] , [246] , [247] , [248] ] [ 126 , 174 , 249 ]
IFN-γ [[ 217 , 218 , 250 ]] [ 193 , 212 , 244 ] [ 247 , 248 , [251] , [252] , [253] ] [ 208 , 249 ]
IL-1β [ 9 , 210 , 254 ] [ 177 , 227 , 244 , 255 , 256 ] [ 79 , 231 , 232 , 248 , 257 ] [ 182 , 233 , 249 , 258 , 259 ]
IL-6 [ 17 , 260 ] [ 177 , 212 , 243 , 244 , 256 ] [ 65 , 248 , 261 , 262 ] [ 121 , 126 , 174 , 182 , 263 ]
IL-12 [ 264 ] [ 172 , 265 ] [ 111 , 195 , 266 , 267 ]
IL-17 [ 209 , 210 , 268 ] [ 185 , 193 , 212 , 244 ] [ 216 , 248 , 269 , 270 ]
IL-18 [ 271 ] [ 228 ] [ 272 ]
IL-33 [ 273 ] [ 274 ] [ 275 ]
CCL2 (MCP-1) [ 9 , 171 ] [ [276] , [277] , [278] , [279] ] [ [280] , [281] , [282] ] [ 263 , 283 ]
CCL3 (MIP-1α) [ 284 ] [ 276 , 285 ] [ 216 , 286 ]
Proteina C reactivă (CRP) [ [287] , [288] , [289] ] [ [290] , [291] , [292] ] [ 93 , 293 , 294 ] [ 121 , 126 , 295 ]
GM-CSF [ 296 ] [ 297 , 298 ] [ [299] , [300] , [301] , [302] ]
NF-κB [ 12 , 25 , 226 , 235 ] [ 132 , 236 , 237 ] [ 79 , [238] , [239] , [240] ] [ 121 , 174 , 241 ]

– nu indică nicio referință literară.

 inhibă mediatorul.Mergi la:

7. Îmbătrânirea, obezitatea și bolile netransmisibile

S-a arătat că deficiențele în zinc, ω-3 PUFA, vitamina D și magneziu furnizează factori de risc semnificativi pentru boala COVID-19 severă, precum și pentru afecțiuni preexistente precum îmbătrânirea, obezitatea / diabetul, bolile cardiovasculare, bolile respiratorii cronice si cancer. Toate aceste comorbidități sunt însoțite de inflamație sistemică care are un impact probabil asupra rezultatului COVID-19 [ 29 ].

Tabelul 4enumeră celulele imune și mediatorii eliberați în COVID-19, furtuna de citokine, îmbătrânirea, obezitatea / diabetul și principalele boli netransmisibile. Se poate observa că mulți dintre mediatori, în special cei care sunt citokine pro-inflamatorii cheie, cum ar fi IL-1β, IL-6, TNF-α și IFN-γ, sunt comune COVID-19, furtuna de citokine (care în rotația face parte din COVID-19) și comorbiditățile enumerate. Intrarea înTabelul 4 pentru boli respiratorii cronice a fost considerat a fi același cu furtuna de citokine, care este principala forță din spatele creării ARDS.

Tabelul 4

Celule cheie și mediatori asociați cu COVID-19, furtuna de citokine, îmbătrânire și comorbidități.

Comorbiditate / activitateCelule / mediatori / factori de transcriereReferințe
COVID-19Mastocite, neutrofile, eozinofile, monocite, macrofage, celule dendritice, NF-κB, IL-1β, IL-1RA, IL-2, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-17, IL-18, IL-21, IL-22, IL-33, TNF-a, IFN-γ, GM-CSF, G-CSF, CCL2, CCL3, IP- 10, Th1 / Th2, PDGF, VEGF, FGF, CRP29 , 133 , 142 , 148 , 160 , 303 ]
Furtuna de citokineIL-1β, IL-6, IL-7, IL-8, IL-9, IL-12, IL-17, IL-18, IL-33, TNF-a, IFN-γ, CCL2, CCL3, FGF, G-CSF, GM-CSF, IP-10, PDGF, VEGF, CRP29 , 142 , 155 , 160 , 304 ]
ÎmbătrânireIL-1, IL-1RN, IL-2, IL-6, IL-8, IL-12, IL-13, IL-18, CRP, IFN-γ, TGF-β, TNF-α, SAA305 , 306 ]
Obezitate / diabetM2 → M1, Th2 → Th1, Treg → Th17, celule B, IL-1β, IL-6, IL-7, IL-22, IFN-γ, TNF-β, CCL2, TNF-α301 , 305 ]
Boli cardiovasculareNF-κB, IL-1β, IL-2, IL-4, IL-6, IL-17, GM-CSF, MMP-2, MMP-9, CCL2, ERK1 / 2, P38 MAPK, TNF-α, IFN -γ, HIF-1α, TLR2, TLR4302 , 309 ]
Boli respiratorii croniceIL-1β, IL-6, IL-7, IL-8, IL-9, IL-12, IL-17, IL-18, IL-33, TNF-a, IFN-γ, CCL2, CCL3, FGF, G-CSF, GM-CSF, IP-10, PDGF, VEGF29 , 142 , 155 , 160 , 304 ]
CancerNF-κB, p53, COX-2 / PGE2, TNFα, IL-1β, IL-6, IL-8, p27, PPARα, γ, GSK-3, EGFR, HER2, VEGF, Cyclin D1, c-Myc, PTEN , MDM2, HIPK2, A20, p21, TGF-β, PARP, caspaze-3,7,8,9, Bcl-2, Bcl-xL, Bax, citocrom c , ROS, iNOS, MMP9, HIF-1α, TLR4,1 ]

7.1. Îmbătrânire

Pe măsură ce corpul uman îmbătrânește, există o scădere treptată a funcționării sistemului imunitar înnăscut și adaptativ, desemnată imunosenescență, precum și o creștere a nivelului de citokine pro-inflamatorii IL-1β, IL-2, IL-6, IL -8, TNF-α și IFN-γ, precum și CRP [ 148 , 305 , 310 ]. Există, de asemenea, o scădere a expresiei ACE2, similar cu COVID-19 [ 148 ]. Îmbătrânirea produce, de asemenea, o producție excesivă de ROS, care poate iniția generarea pro-inflamatorie prin activarea factorilor de transcripție, cum ar fi NF-κB [ 148 ]. S-a constatat că funcția celulelor T devine din ce în ce mai defectă la vârstnici, scăzând funcția imună [ 20 ].

Menținerea funcționării sănătoase a celulelor are o importanță crescândă pe măsură ce îmbătrânirea progresează. Lucrând împotriva acestui lucru, deficiențele în unul sau mai multe de zinc, FA-3 PUFA, vitamina D și magneziu vor duce inevitabil la o diminuare a funcției imune și la o creștere a nivelurilor de mediatori inflamatori [ 21 , 27 , 311 ]. Deficiențele de zinc, FA-3 PUFA, vitamina D și magneziu cresc odată cu îmbătrânirea, contribuind frecvent la boli legate de vârstă, cum ar fi diabetul, bolile cardiovasculare și bolile pulmonare cronice [ 27 ].

Dieta este foarte importantă pentru aportul adecvat de zinc, FA-3 PUFA și magneziu, deoarece importanța și interesul pentru calitatea alimentelor se diminuează odată cu îmbătrânirea, precum și gradul de absorbție [ 312 ]. În plus, expunerea persoanelor în vârstă la lumina soarelui devine sever limitată, ducând la scăderea nivelului de vitamina D.

7.2. Obezitate / diabet

Obezitatea este legată de acumularea de celule pro-inflamatorii în țesutul adipos visceral, care poate duce la rezistență la insulină și la diabet zaharat [ 151 ]. Obezitatea este asociată cu inflamație de grad scăzut, care la rândul său este asociată cu diminuarea răspunsurilor imune înnăscute și adaptative. Inflamarea de grad scăzut este legată de hipoxia și disfuncția adipocitelor [ 307 ]. Există o eliberare semnificativă de citokine pro-inflamatorii (de exemplu, IL-1β, IL-6, TNF-α) care activează la rândul lor macrofage, celule T și celule B, creând o buclă de auto-regenerare [ 307 , 313 ]. Obezitatea este, de asemenea, asociată cu stres oxidativ crescut [ 314 ].

Deficitul de zinc a fost demonstrat într-o serie de studii că este asociat cu obezitatea și diabetul [ [315] , [316] , [317] ]. Zincul este esențial pentru procesarea fiziologică normală a insulinei și, prin urmare, este direct asociat cu diabetul [ 318 ].

Raportul FA-6 / ω-3 PUFA a crescut dramatic în ultimii 50 de ani și a contribuit la creșterea proporției populației obeze [ 319 ]. S-a demonstrat că această tendință poate fi inversată prin creșterea consumului de EPA și DHA [ 319 ]. S-a recomandat ca suplimentul de emulsie cu ulei de pește să fie administrat celor obezi și cu risc de a contracta COVID-19, datorită proprietăților imunomodulatoare ale EPA și DHA [ 320 ].

Obezitatea crește riscul de deficit de vitamina D, în principal datorită adipozității mai mari a individului obez. Vitamina D este liposolubilă și este depozitată în principal în țesuturile adipoase, ducând la niveluri scăzute de vitamina D în circulație [ 321 ]. Nivelurile scăzute de vitamina D au fost raportate în mod consecvent între grupurile de vârstă, etnie și geografie [ 322 , 323 ]. Metaanalizele au constatat că deficiența de vitamina D s-a corelat cu obezitatea crescută [ 321 , 324 ]. S-a demonstrat că suplimentarea cu vitamina D reduce rezistența la insulină [ 325 ], iar diabetul zaharat se corelează cu deficitul de vitamina D la adulții în vârstă [ 326 ].

Există o relație pozitivă între deficiența de magneziu și obezitate și inflamația cronică [ 327 ]. La rândul său, obezitatea este un factor de risc major pentru bolile cronice care depind de inflamația cronică, cum ar fi diabetul, bolile cardiovasculare și cancerul [ 327 ].

7.3. Boli cardiovasculare

O proporție mare de pacienți cu COVID-19 au factori de risc asociați bolilor cardiovasculare [ 328 ]. Nivelurile ridicate de inflamație asociate cu COVID-19 pot induce boli cardiovasculare [ 80 , 328 ]. Studiile efectuate pe indivizi COVID-19 cu boli cardiovasculare subiacente au prezentat un risc crescut de boală severă și mortalitate [ 329 ].

Choi și colegii săi [ 330 ] au analizat literatura despre starea zincului și bolile cardiovasculare. Au descoperit că deficitul de zinc a fost asociat cu ateroscleroza, hipertensiunea, infarctul miocardic, fibrilația atrială și insuficiența cardiacă congestivă. În mod similar, Jurowski și colegii săi [ 331 ] au revizuit literatura de specialitate, raportând că deficitul de zinc este corelat cu hipertensiunea, ateroscleroza și insuficiența cardiacă. Rapoarte suplimentare susțin faptul că deficitul de zinc este asociat cu boli cardiovasculare [ 22 , 23 ].

Efectele cardioprotectoare ale PUFA n-3 și ale metaboliților acestora sunt atribuite în principal proprietăților lor imunomodulatoare. Dovezile emergente demonstrează capacitatea PUFA-urilor ω-3 de a reduce nivelurile circulante ale chemokinelor inflamatorii, citokinelor și a metaboliților proinflamatori derivați din PUFA-urile ω-6 [ 332 , 333 ]. O serie de studii au constatat că un consum mai mare de FA-3 PUFA scade numărul deceselor legate de bolile cardiovasculare [ [334] , [335] , [336] , [337] ]. Darwesh și colegii de muncă [ 338] a prezentat un raport detaliat cu privire la efectele pozitive ale FA-3 PUFA în bolile cardiovasculare, care includea stabilizarea plăcilor aterosclerotice, reducerea incidenței formării trombului, îmbogățirea membranelor celulare și modificarea structurii plutelor lipidice și a funcției acestora în beneficiul tratamentului boli cardiovasculare.

Există o corelație puternică între obezitate și deficitul de vitamina D, precum și între obezitate și bolile cardiovasculare. Prin urmare, ar fi anticipat că ar exista un beneficiu în vitamina D suplimentară pentru pacienții obezi cu risc de boli cardiovasculare [ 339 ]. Un studiu efectuat pe 137 de pacienți brazilieni în vârstă a constatat că 65% erau deficienți de vitamina D și că exista o asociere puternică între deficiența de vitamina D și riscul de insuficiență cardiacă [ 340 ]. O serie de recenzii din literatura de specialitate au examinat asocierea dintre deficiența de vitamina D și incidența bolilor cardiovasculare, concluzionând că vitamina D scade inflamația și citokinele proinflamatorii provocând o asociere puternică cu bolile cardiovasculare [ 308 , 341342 ].

Efectele antiinflamatorii și anti-oxidative ale magneziului oferă protecție cardiovasculară [ 119 , 120 ]. Qu și colegii săi [ 127 ] au furnizat o meta-analiză care a arătat o corelație inversă între concentrațiile serice de magneziu și riscul evenimentelor cardiovasculare totale.

7.4. Boli pulmonare

Bolile pulmonare includ pneumonie, bronșită și astm. Cea mai frecventă boală pulmonară asociată cu COVID-19 este sindromul de detresă respiratorie acută (ARDS), promovat cel mai adesea de furtuna de citokine și care este adesea letală [ 51 ]. ARDS apare la aproximativ 10% dintre pacienții cu COVID-19 [ 51 ].

Meydani și colegii de muncă [ 20 ] au descoperit că persoanele în vârstă care au un deficit de zinc au șanse mai mari de a contracta pneumonie cu consecințele sale ulterioare. Rapoarte suplimentare susțin faptul că deficitul de zinc este asociat cu boli pulmonare cronice [ 21 , 23 ]. Skalny și colegii săi [ 12 ] au dedus că zincul are tendința de a atenua COVID-19 prin proprietățile sale de reducere a inflamației, îmbunătățirea clearance-ului mucociliar și promovarea imunității antivirale și antibacteriene.

Weill și colegii de muncă [ 51 ] au discutat despre proprietățile PUFA ω-3, care includ interferența intrării și replicării virale și inhibarea inflamației, ceea ce duce la îmbunătățirea rezultatului pacienților cu afecțiuni critice cu SDRA. S-a arătat într-un studiu în care s-a adăugat lichid bronhoalveolar de spălare la celulele A549 că, prin creșterea raportului ω-3: ω-6 PUFA, a existat o scădere a nivelurilor de NF-κB, COX-2 și PGE2 și o creștere în eliberarea IL-10 și PPARγ [ 343 ].

S-a observat că există o legătură puternică între sezonalitatea nivelurilor scăzute de vitamina D și apariția și prevalența gripei în timpul iernii [ 80 ]. De asemenea, s-a raportat că un procent ridicat (> 80%) dintre pacienții cu boală pulmonară obstructivă cronică au avut niveluri scăzute de vitamina D [ 344 ]. De asemenea, a fost raportată asocierea dintre niveluri mai ridicate de vitamina D și funcția pulmonară îmbunătățită [ [345] , [346] , [347] ]. Mai mult, s-a raportat că deficitul de vitamina D este asociat cu apariția bolilor respiratorii și cu mortalitatea care rezultă [ 90 , [347] , [348] , [349] ].

Rolul magneziului în funcția pulmonară a fost discutat de de Baaij și colegii săi [ 124 ], unde magneziul a fost descris ca având trei roluri: un efect puternic vasodilatator și bronhodilatator, reglarea eliberării de acetilcolină și histamină și ca anti- agent inflamator. Prin urmare, magneziul a fost sugerat ca un tratament util pentru astm și tulburări pulmonare obstructive cronice. Micke și colegii săi [ 114 ] au discutat, de asemenea, despre magneziu și funcția pulmonară în detaliu, cu o analiză similară a efectelor anticolinergice, antihistaminice și antiinflamatorii ale magneziului.

7.5. Cancer

Cancerul a fost discutat în contextul esențialității suficientă a zincului, a FA-3 PUFA și a vitaminei D [ 1 ]. Oportunitatea de a include magneziul ca o componentă esențială suplimentară în prevenirea și tratamentul cancerelor este luată aici, deoarece magneziul este esențial pentru activarea vitaminei D [ 122 , 123 ]. Magneziul, așa cum s-a discutat mai sus, este, de asemenea, activ în reglarea sistemului imunitar și controlul stresului oxidativ și al inflamației [ 119 , 120 ], care sunt predominante în dezvoltarea timpurie a cancerelor [ 350 ].Mergi la:

8. Discuție

COVID-19 și virusul său SARS-CoV-2 au oferit o oportunitate ideală pentru a reseta abordarea de prevenire și tratament a bolilor netransmisibile, în special a celor care apar predominant la vârstnici. COVID-19 s-a dovedit a fi legat de comorbidități precum senescența care apare la vârstă, obezitatea / diabetul care sunt mai severe la vârstă și bolile cardiovasculare și bolile pulmonare cronice care sunt mai răspândite la vârstă, precum și cancerele. Prin urmare, este oportun să se examineze cu atenție prevenirea și tratamentul COVID-19 și acele boli, cu o atenție deosebită la acele caracteristici și caracteristici care sunt comune acestor boli. Cele mai remarcabile caracteristici comune sunt inflamația și hiperactivitatea sistemului imunitar înnăscut și adaptativ.Controlul inflamației și al sistemului imunitar depinde în mod fundamental de suficiența nutrienților esențiali zinc, FA-3 PUFA, vitamina D și magneziu.

Această lucrare a fost îndreptată spre o apreciere a beneficiilor de a avea suficiența de zinc, FA-3 PUFA, vitamina D și magneziu. Aceste patru componente sunt esențiale, deoarece sunt naturale pentru funcționarea normală a celulelor și a multor alte componente ale corpului uman. Sunt extrem de sigure atunci când sunt suplimentate într-un mod controlat. Controlul la vârstnici (de exemplu, 65 de ani și peste) poate fi menținut prin analize anuale ale nivelului lor seric. Acest lucru poate fi realizat cu sprijinul guvernului, precum și prin furnizarea de suplimente de către guvern, acolo unde este necesar. Costul acestui serviciu pentru cei peste 65 de ani ar fi mic în comparație cu economiile potențiale în spitalizare și costurile de îngrijire critică. Ca exemplu,o estimare germană a efectului suplimentării numai a vitaminei D asupra economiilor de cancer numai în Germania a arătat o reducere a costurilor de aproximativ 254 milioane EUR pe an, cu o prevenire de aproape 30.000 de decese cauzate de cancer pe an [351 ].

Zincul, FA-3 PUFA-urile, vitamina D și magneziul sunt pleiotrope întrucât permit și, de fapt, stimulează funcționarea granulocitelor, cum ar fi mastocitele, neutrofilele și eozinofilele, precum și monocitele / macrofagele, celulele dendritice, celulele T și celulele B în condiții normale și atunci când există invazii minore de agenți patogeni, cum ar fi infecții virale și bacteriene minore. În schimb, zincul, PUFA ω-3, vitamina D și magneziul acționează pentru a suprima hiperinflamarea și perturbările majore ale sistemului imunitar care apar atunci când există o invazie semnificativă de agenți patogeni virali sau bacterieni, cum ar fi SARS-CoV-2 sau netransmisibil. boli precum diabetul, bolile cardiovasculare sau bolile pulmonare cronice. În aceste situații, zincul, FA-3 PUFA-urile, vitamina D și magneziul au capacitatea de a suprima inflamația excesivă și dereglarea sistemului imunitar.Acești nutrienți sunt, prin urmare, esențiali în toate aspectele; atunci când sunt prezenți în cantități suficiente, sunt direcționați spre asigurarea unei sănătăți bune pentru oameni în orice moment și pentru toate vârstele. Acest lucru nu este în mod normal cazul medicamentelor non-naturale care sunt prescrise pentru tratamentul anumitor afecțiuni patologice.

Vaccinurile sunt rareori 100% în prevenirea transmiterii și prevenirea îmbolnăvirii de către oameni a bolii respective; există potențiale probleme cu mutațiile și diminuarea eficacității acestora. Este de remarcat faptul că vaccinurile își îndeplinesc doar funcția prin sistemul imunitar adaptiv, în timp ce zincul, FA-3 PUFA, vitamina D și magneziu afectează atât sistemul imunitar înnăscut, cât și cel adaptiv. Prin urmare, este de dorit suplimentarea celor patru nutrienți în tratamentul COVID-19, mai ales dacă această suplimentare este benefică în prevenirea sau tratarea bolilor netransmisibile sau reducerea efectelor adverse ale îmbătrânirii.Mergi la:

Finanțarea

Această cercetare nu a primit nicio subvenție specifică de la agențiile de finanțare din sectoarele public, comercial sau non-profit.Mergi la:

Declarație de interes concurent

Autorul declară că nu are interese financiare concurente cunoscute sau relații personale care ar fi putut părea să influențeze munca raportată în această lucrare.Mergi la:

Referințe

1. Story MJ Zinc, acids-3 acizi grași polinesaturați și vitamina D: o combinație esențială pentru prevenirea și tratamentul cancerelor. Biochimie. 2021; 181 : 100–1222. [ PubMed ] [ Google Scholar ]2. Raport de stare globală privind bolile netransmisibile ”. CARE; 2010. https://www.who.int/nmh/publications/ncd_report_full_en.pdf Google Scholar ]3. Pecora F., Persico F., Argentiero A., Neglia C., Esposito S. Rolul micronutrienților în sprijinul răspunsului imun împotriva infecțiilor virale. Nutrienți. 2020; 12 (10) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]4. Szabó Z., Marosvölgyi T., É Szabó, Bai P., Figler M., Verzár Z. Efectul potențial benefic al suplimentării EPA și DHA gestionând furtuna de citokine în boala coronavirusului. Față. Fiziol. 2020; 11 : 752. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]5. Calder PC, Carr AC, Gombart AF, Eggersdorfer M. Starea nutrițională optimă pentru un sistem imunitar care funcționează bine este un factor important de protecție împotriva infecțiilor virale. Nutrienți. 2020; 12 (4): 1181. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]6. Iddir M., Brito A., Dingeo G., Fernandez Del Campo SS, Samouda H., La Frano MR Întărirea sistemului imunitar și reducerea inflamației și a stresului oxidativ prin dietă și nutriție: considerații în timpul crizei COVID-19. Nutrienți. 2020; 12 (6): 1562. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]7. Mammadova-Bach E., Braun A. Homeostazia zincului în bolile legate de trombocite. Int. J. Mol. Știință. 2019; 20 (21): 5258. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]8. Prasad AS Zincul în sănătatea umană: efectul zincului asupra celulelor imune. Mol. Med. 2008; 14 (5-6): 353-357. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]9. Bao B., Prasad AS, Beck FW, Fitzgerald JT, Snell D., Bao GW Zincul scade proteina C reactivă, peroxidarea lipidelor și citokinele inflamatorii la subiecții vârstnici: o implicație potențială a zincului ca agent ateroprotector. A.m. J. Clin. Nutr. 2010; 91 (6): 1634–1641. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]10. Prasad AS, Beck FW, Bao B., Fitzgerald JT, Snell DC, Steinberg JD Suplimentarea cu zinc scade incidența infecțiilor la vârstnici: efectul zincului asupra generării de citokine și stres oxidativ. A.m. J. Clin. Nutr. 2007; 85 (3): 837–844. [ PubMed ] [ Google Scholar ]11. Gao H., Dai W., Zhao L., Min J., Wang F. Rolul homeostaziei zincului și zincului în funcția macrofagelor. J Immunol Res. 2018 2018. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]12. Skalny AV, Rink L., Ajsuvakova OP, Aschner M., Gritsenko VA, Alekseenko SI Zinc și infecții ale tractului respirator: perspective pentru COVID-19 (Review) Int. J. Mol. Med. 2020; 46 (1): 17-26. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]13. Kloubert V., Rink L. Zincul ca micronutrienți și rolul său preventiv de deteriorare oxidativă în celule. Food Funct. 2015; 6 (10): 3195-3204. [ PubMed ] [ Google Scholar ]14. Prasad AS Descoperirea deficitului de zinc uman: impactul acestuia asupra sănătății și bolilor umane. Adv Nutr. 2013; 4 (2): 176-190. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]15. Shankar AH, Prasad AS Zincul și funcția imună: baza biologică a rezistenței modificate la infecție. A.m. J. Clin. Nutr. 1998; 68 (2 Supliment): 447S – 463S. [ PubMed ] [ Google Scholar ]16. Haase H., Rink L. Sistemul imunitar și impactul zincului în timpul îmbătrânirii. Imun. Îmbătrânire. 2009; 6 : 9. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]17. Primar-Ibarguren A., Busca-Arenzana C., Robles-Marhuenda Á O ipoteză pentru posibilul rol al zincului în căile imunologice legate de infecția COVID-19. Față. Immunol. 2020; 11 : 1736. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]18. Haase H., Rink L. Semnalele de zinc și funcția imună. Biofactori. 2014; 40 (1): 27-40. [ PubMed ] [ Google Scholar ]19. Gombart AF, Pierre A., Maggini S. O revizuire a micronutrienților și a sistemului imunitar care funcționează în armonie pentru a reduce riscul de infecție. Nutrienți. 2020; 12 (1): 236. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]20. Meydani SN, Barnett JB, Dallal GE, Fine BC, Jacques PF, Leka LS Serum zinc și pneumonie la vârstnici la azil. A.m. J. Clin. Nutr. 2007; 86 (4): 1167–1173. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]21. Barnett JB, Hamer DH, Meydani SN Starea scăzută a zincului: un nou factor de risc pentru pneumonia la vârstnici? Nutr. Rev. 2010; 68 (1): 30-37. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]22. Braun LA, Ou R., Kure C., Trang A., Rosenfeldt F. Prevalența deficitului de zinc la pacienții cu chirurgie cardiacă. Heart Lung Circ. 2018; 27 (6): 760-762. [ PubMed ] [ Google Scholar ]23. Derwand R., Scholz M. Suplimentarea cu zinc crește eficacitatea clinică a clorochinei / hidroxiclorochinei pentru a câștiga bătălia de astăzi împotriva COVID-19? Med. Ipoteze. 2020; 142 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]24. George MM, Subramanian Vignesh K., Landero Figueroa JA, Caruso JA, Deepe GS, Jr. J. Immunol. 2016; 197 (5): 1864–1876. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]25. Prasad AS, Bao B., Beck FW, Sarkar FH Citokine inflamatorii suprimate de zinc prin inducerea inhibării mediată de A20 a factorului nuclear-κB. Nutriție. 2011; 27 (7-8): 816-823. [