Linkurile autorului deschid panoul de suprapunere Simon PJ Albracht
https://doi.org/10.1016/j.ctarc.2022.100537Obțineți drepturi și conținut
Repere
•Imunoterapia cu GcMAF revizuită
•Legarea aproape stoechiometrică a GcMAF la și activarea macrofagelor
•O injecție pe săptămână cu 100 ng GcMAF
•Durata terapiei 20 până la 60 de săptămâni; fara efecte adverse
•Terapia monitorizată cu activitatea serică a α-N-acetilgalactosaminidazei la pH 6,0
Abstract
Această prezentare generală descrie cercetările lui Nobutu Yamamoto (Philadelphia) în ceea ce privește imunoterapia cu GcMAF pentru pacienții cu cancer și pentru pacienții infectați cu viruși patogeni. GcMAF ( componenta specifică grupului M acrophage- Activator F _actor) este o proteină de mamifer cu o potență incredibilă de a activa direct macrofagele. De la sfârșitul anilor 1980, investigațiile lui Yamamoto au fost publicate în numeroase reviste, dar pentru a înțelege detaliile cercetării sale, a fost necesar un studiu minut al multor brevete ale sale. Dar chiar și atunci, din păcate, uneori lipsea o descriere precisă a experimentelor sale. Această prezentare generală încearcă să rezumă toate cercetările lui Yamamoto privind GcMAF, precum și unele lucrări mai recente selectate de la alți anchetatori, care au încercat să verifice și/sau să reproducă rapoartele lui Yamamoto. În opinia mea, cel mai important rezultat al cercetării GcMAF merită o atenție reînnoită pe scară largă: injecțiile GcMAF la om (100 ng pe săptămână, intramuscular sau intravenos) pot ajuta la vindecarea pacienților cu o mare varietate de cancere, precum și a pacienților infectați cu viruși patogeni de înveliș, cum ar fi virusul imunodeficienței umane 1 (HIV-1), gripa, rujeola și rubeola (și poate și SARS-CoV-2 ). Din datele lui Yamamoto se poate calcula că GcMAF este un activator aproape stoichiometric al macrofagelor. Yamamoto a monitorizat progresul imunoterapiei sale prin intermediul nivelului seric al unei enzime numite nagalaza (α-N – o activitate cetil gal actosaminidă ase la pH 6). Am discutat pe larg proprietățile și site-ul catalitic potențial al acestei activități enzimatice într-un apendice intitulat: „Search for the potential active site of the latent α – N -acetilgalactosaminidaze activity in the glycoproteins of some envelope viruses”.
Cuvinte cheie
Nobuto Yamamoto (Philadelphia)
Imunoterapie
GcMAF
Nagalase
Cancer
Virușii plicului
Abrevieri
DDG
dodecilglicerolFată
galactozaα-GalNAc
N -acetil-α-D-galactozaminidă, N -acetil-2-deoxi-2-amino-galactozăGc
Componentă specifică grupuluiGcMAF
Componentă specifică grupului Factor de activare a macrofagelorgp160
monomer al glicoproteinei cu vârf trimer a HIV-1 cu un PM aparent de 160 kDagp120
parte hidrofilă N-terminală a gp160 eliberată la scindare de către furina celulei gazdăgp41
parte hidrofobă C-terminală a gp160 formată după scindarea de către furina celulei gazdăHIV-1
virusul imunodeficienței umane 1Naga
α – N -acetilgalactosaminidazaNaga4
Activitate lizozomală Naga (om/pui) la pH 4,3Nagalase
activitatea Naga la pH 6,0 (aici numită și Naga6)pNP
para-nitrofenol;SA
acid sialicSARS-CoV-2
sindromul respirator acut sever coronavirusTAM
macrofage asociate tumorilor.
Introducere
În 2008/2009 au apărut patru lucrări din grupul lui Nobuto Yamamoto din Philadelphia [1] , [2] , [3] , [4] care descriu imunoterapia de succes a cancerului și HIV-1 cu o proteină de mamifer GcMAF ( G roup-specific c omponent M acrophage- A ctivant F actor). La prima vedere, rezultatele din aceste patru lucrări Yamamoto păreau prea bune pentru a fi adevărate. La un număr limitat de pacienți neanemici (8 cu cancer de colon , 16 cu cancer de sân sau de prostată și 15 infectați cu HIV-1) nivelul seric al nagalazei (α – N – a ).activitatea cetyl gal actosaminid ase la pH 6) a fost utilizată ca marker pentru masa tumorală rămasă în timpul tratamentului cu GcMAF. S-a menționat că după oprirea imunoterapiei cu GcMAF (care era singurul tratament), când nivelul nagalazei a atins niveluri de bază, toți pacienții au rămas fără simptome mulți ani. Pentru pacientele cu cancer de sân, aceasta a fost de cel puțin 4 ani și chiar până la 10 ani [5]. Pentru pacienții cu cancer colorectal sau de prostată sau cu HIV-1/SIDA, aceasta a fost de cel puțin 7 ani. În plus, nivelul lor de nagalase(nagalaza) nu a crescut în acei ani. Menționarea acestor perioade de supraviețuire fără simptome a indicat că multe dintre studiile raportate au fost efectuate în jurul sau înainte de începutul secolului. Aceste serii de lucrări mi-au stârnit interesul și am decis să inspectez bazele experimentale ale cercetării lui Yamamoto descrise în lucrările și brevetele sale.
Yamamoto și colaboratorii au început la sfârșitul anilor 1980 să investigheze mecanismele pe care corpul uman le folosește pentru a combate cancerul. În prezenta prezentare de ansamblu, discut propunerea lui Yamamoto pentru depistarea precoce a cancerului și pentru monitorizarea modificărilor sarcinii tumorale maligne prin nivelurile serice de nagalază. Această activitate este denumită aici și Naga6 pentru a o deosebi de activitatea serică a enzimei lizozomale clasice α – N -acetilgalactosaminidazei (EC 3.2.1.49, Naga; defect la pacienții cu boala Schindler) cu un pH optim la pH 4,3 [6] , [7] , [8], aici numită și Naga4. Discută în continuare rapoartele lui Yamamoto care descriu tratamentul pacienților cu cancer, precum și cu infecții cu niște viruși patogeni de înveliș, prin aplicarea imunoterapiei cu GcMAF. Fiind un biochimist pensionat, interesul meu este pur științific.
Pentru informații mai detaliate despre o serie de subiecte, așa cum este indicat în acest text principal, cititorul este încurajat să vizualizeze informațiile suplimentare (secțiunile S1 până la S11, figurile S1 până la S12, tabelele S1 până la S2, 87 referințe).
Într-un apendice intitulat „Căutarea site-ului potențial activ al activității latente a α – N -acetilgalactosaminidazei în glicoproteinele unor virusuri de înveliș” (Secțiunile A1 până la A4, Figurile A1 până la A10, Tabelul A1, 37 Referințe) am inspectat 3D disponibile structurile glicoproteinelor (proteine spike) din virușii patogeni de anvelopă HIV-1, gripă, Ebola și SARS-CoV-2. Niciuna dintre structuri nu a conținut cvartetul de situs activ al resturilor de aminoacizi Trp-Trp-Asp-Glu indicativ pentru o endo-glicohidrolază. Cu toate acestea, ei au arătat triouri caracteristice ale reziduurilor de aminoacizi Trp, Asp și Glu într-o conformație similară cu trio-ul de situs activ Trp-Asp-Asp din α- N lizozomal.-acetilgalactosaminidaza. Trio-ul WDE din glicoproteinele HIV-1 și gripei ar putea explica activitatea (latentă) nagalazei raportată de Yamamoto. Triourile din proteinele cu vârf de la Ebola (WEE) și SARS-CoV-2 (WDE) indică o posibilă activitate (latentă) a nagalazei, dar aceasta rămâne de stabilit.
Celulele canceroase au un set de proprietăți comune
Mutațiile genetice în aproape toate tipurile de celule canceroase afectează un set de 12 căi și procese de semnalizare celulară principale. La rândul său, aceasta duce la aceleași modificări ale fenotipului bioenergetic și imunologic. Deoarece acest lucru este de ajutor pentru o mai bună înțelegere a constatărilor lui Yamamoto, am discutat acest lucru în Secțiunea S1 a Informațiilor suplimentare .
Descoperirea lui Yamamoto: o proteină de mamifer numită GcMAF este cel mai puternic activator al macrofagelor
După cum sa analizat în 1970 [9] , stimularea sistemului imunitar pentru a trata cancerul, adică imunoterapia , a primit atenție încă de la începutul anilor 1900. Ulterior, interesul a scăzut până la descoperirea antigenelor specifice tumorii, la mijlocul anilor 1950.
La sfârșitul anilor 1980, grupul lui Nobuto Yamamoto din Philadelphia a început cercetările asupra componentelor sanguine implicate în activarea macrofagelor. Ideea de bază din spatele acestor studii a fost [10] că „Inflamația indusă fie de infecția microbiană, fie de administrarea de componente bacteriene are ca rezultat chemotaxia și activarea macrofagelor. Pe această bază, presupunem că macrofagele din gazdă recunosc un semnal stimulator care iradiază din regiunea inflamatorie.„
Inițial, a fost studiat mecanismul activării puternice in vivo și in vitro a macrofagelor de șoareci de către alchil-lizofosfolipide și metaboliții lor alchil-glicerofosfați și alchil-gliceroli [ 10 , 11 ]. Alchil-lizofosfolipidele se numără printre produșii de descompunere ai pereților multor celule canceroase . Macrofagele au fost obținute din celule peritoneale ale șoarecilor tratați și martor sau, pentru experiment in vitro, din celule peritoneale rezidente ale șoarecilor netrați. În ambele cazuri aproape toate celulele (cca. 96%), aderente la lamele de acoperire din sticlă, au fost identificate ca macrofage prin criterii fagocitare și morfologice. Activarea a fost determinată prin teste de ingestie , prin producerea de superoxid și prin activitatea citocidă împotriva celulelor retinoblastomului ..
Folosind dodecilglicerol (DDG, un alchil-glicerol) pentru a iniția activarea macrofagelor de șoareci (in vivo și in vitro), s-a descoperit că diferite componente ale sângelui erau esențiale pentru activarea maximă: (a) limfocitele B , activate de DDG [12] ; (b) limfocite T netratate [12] și; (c) o proteină serică solubilă [13] identificată ca proteină Gc [ 14 , 15 ]. DDG în sine nu a avut efect de activare asupra macrofagelor.
Proteina Gc
Proteina Gc ( componenta specifică grupului ) din sânge a fost identificată de Hirschfeld în 1959 (așa cum este menționat în [16] ) și și-a primit numele un an mai târziu [17] . Deși există aproximativ 120 de izoforme de Gc în rândul oamenilor, majoritatea oamenilor (92 până la 100% [ 16 , [18] , [19] , [20] ]) poartă una dintre cele trei forme polimorfe principale numite Gc1f, Gc1s și Gc2 (șase combinații alelice posibile). Indicațiile „f” și „s” pentru proteinele Gc1 provin din mobilitatea lor electroforetică relativă diferită. Unul (Gc1f) rulează mai rapid la anod (o proteină mai negativă) decât cealaltă (Gc1s; s pentru lent). Diferența dintre aceste trei forme polimorfe de Gc constă în mutații punctuale în secvența de aminoacizi la pozițiile 416 și 420 (vezi Secțiunea S2, Tabelul S1). Rețineți că toate secvențele conțin T418.
Masa moleculară a Gc este de 51,2 kDa ( intrarea în baza de date UniProtKB pentru Gc2: P02774) și proteina matură constă din 458 de resturi de aminoacizi. În plasmă/ser, este prezent în concentrații de 250 până la 350 mg/L (cca. 6 µM), dar și variații mai mari (75 până la 450 mg/L) au fost găsite la indivizi aparent sănătoși [21] . Una dintre funcțiile Gc este de a transporta sterolii (apolari) de vitamina D [ 22 , 23 ]. Prin urmare, este adesea denumită proteina care leagă vitamina D (VDBP sau DBP). De asemenea, Gc poate lega puternic monomerii de actină și cea mai importantă funcție a Gc este de a curăța G-actina extracelulară (actina globulară), eliberată din citoscheletul celulelor necrotice și/sau deteriorate [ 24 ]., 25 ]. Acest lucru previne polimerizarea acestor monomeri hidrofobi la F-actină (actină fibroasă), care altfel poate duce la obstrucția capilarelor sanguine. Timpul de înjumătățire plasmatică al Gc necomplexat în sângele uman este de 2 până la 2,5 zile, dar timpul de înjumătățire plasmatică al Gc-actinei este de numai 30 până la 60 de minute. Gc-actina este eliminată de ficat.
Sinteza zilnică de Gc în ficat este de cca. 10 mg/kg. Traumele puternice pot duce, prin urmare, la niveluri periculos de scăzute de Gc și insuficiență de organ [ 26 , 27 ]. Gc în sângele indivizilor sănătoși constă în 20 până la 44% (mol.mol −1 ) de Gc-actină [28] .
O-glicozilarea Gc
În 1983 s-a raportat că proteina Gc1s poate conține o singură tri-zaharidă liniară, NeuAc-α-(2→3)-Gal-β-(1→3)-GalNAc-α-(1→0)-, legată la un rest serină (S) sau treonină (T) (scris aici și ca SA-Gal-GalNAc-S/T). Gradul de O-glicozilare a fost de cca. 1% (g/g), în timp ce Gc nu conținea N-glicozide [18] (abrevieri: NeuAc, acid N -acetilneuraminic, un acid sialic (SA); Gal, galactoză ; GalNAc, N -acetil-α-D-galactozaminidă ). În acel studiu timpuriu nu a putut fi detectată nicio glicozilare în Gc2 (probabil din cauza limitei de detectare a metodelor utilizate). După cum sa discutat mai târziu, glicozilarea poate avea loc pe T418, prezent în toate cele trei forme principale de Gc, și/sau pe T420 (absent în Gc2).
GcMAF
Yamamoto și colegii au descoperit că activarea celulelor B de către DDG a indus o creștere de 3 ori a β-galactozidazei legate de suprafața exterioară. Ei au bănuit că această activitate îmbunătățită ar putea juca un rol în conversia Gc într-un activator al macrofagelor. Ei au mai presus că activitatea neuraminidazei (sialidazei) legată de suprafața exterioară a celulelor T netratate a fost, de asemenea, implicată. Acest lucru a condus la ideea că, în studiile lor pe animale, cunoscuta O-glicozilare a proteinei Gc [18] a fost parțial desglicozilată de β-galactozidază (a celulelor B activate de DDG) și sialidaza (a celulelor T) la un produs Gc. , denumit GcMAF [ 15 , 29 , 30 ].
Acest lucru a fost dovedit prin experimente în care Gc1 uman purificat (un amestec de Gc1f și Gc1s) a fost tratat cu p-galactozidază achiziționată și sialidază imobilizată pe coloane separate de agaroză . Produsul GcMAF rezultat a fost la fel de eficient ca cel produs cu celule B și T [15] . Când se utilizează celule, GcMAF s-a format numai atunci când proteina Gc a fost tratată mai întâi cu celule B activate și apoi cu celule T; ordinea inversă nu a funcționat. Cu toate acestea, cu enzimele imobilizate ordinea tratamentului nu era importantă. Pe această bază, s-a propus, dar nu a fost arătat, că proteina Gc1 poate conține o grupare Gal-(SA)-GalNAc-tri-zaharidă ramificată legată la un reziduu de treonină. Cu Gc2 uman, un produs GcMAF activ ar putea fi obținut direct cu celule B activate sau cu β-galactozidază legată de coloană. Prin urmare, s-a propus că Gc2 poate conține o Gal-GalNAc- dizaharidă legată de Thr [15] . Am rezumat constatările lui Yamamoto în Fig. 1 și le-am adaptat în lumina rezultatelor și sugestiilor lui Borges și colab. [ 20 , 31 , 32 ]. așa cum sa discutat în secțiunea S2. În plus, am indicat posibile forme active de GcMAF ale Gc1 nemenționate de Yamamoto sau Borges.

Potrivit Yamamoto și colab., GcMAF a fost cel mai puternic activator al macrofagelor descris până atunci [33] . Ei au propus că GcMAF este activatorul natural al macrofagelor la mamifere și că injectarea de GcMAF, în ocolirea implicării celulelor B și T, ar putea fi utilizată ca un adjuvant puternic pentru a îmbunătăți (nespecific) răspunsul imun la antigenele canceroase la oameni. 30 , 33 ].
Partea carboxi-terminală a Gc este responsabilă pentru efectul de activare a macrofagelor al GcMAF
Yamamoto a descoperit că partea carboxi-terminală a proteinei este responsabilă pentru activarea macrofagelor [ 30 , 34 ]. O polipeptidă care cuprinde domeniul C-terminal (80 de resturi de aminoacizi) al Gc1s a fost preparată prin donarea fragmentului de genă codificatoare și exprimarea acestuia în celule de insecte. Proteina purificată a fost tratată cu p-galactozidază și sialidază imobilizate și proteina rezultată a fost numită CdMAF (Cd din domeniul C – terminal ). A fost la fel de activ ca Gc1s-MAF (chiar și în tratamentul pacienților cu cancer de prostată) [35]. Niciuna dintre cele două proteine MAF nu a provocat niciun efect advers la om. Chiar și o proteină MAF preparată dintr-o polipeptidă cu 40 de resturi de aminoacizi C-terminal ale Gc1s a fost menționată pentru a arăta activarea macrofagelor [34] . Peptidele cu mai puțin de 40 de aminoacizi nu au putut fi exprimate în celulele de insecte. În plus, astfel de peptide mici se degradează rapid în sânge. Structurile moleculare ale Gc2 și polipeptidele C-terminale discutate aici sunt prezentate în Fig. 2 . Rezultatele lui Yamamoto arată că prezența vitaminei D legată în GcMAF este irelevantă pentru activitatea sa MAF, deoarece CdMAF ratează domeniul N-terminal care leagă sterolii de vitamina D [ 36 , 37 ].

Analogi sintetici ai GcMAF
Există unele rapoarte despre analogii sintetici ai GcMAF care au avut un efect activator asupra macrofagelor. Sa demonstrat că structura 3D a α-helixului care conține GalNAc în Gc formează baza efectului MAF. Acest lucru este descris în Secțiunea S3.
Imunoterapia cu GcMAF
Yamamoto a brevetat majoritatea descoperirilor sale, începând din 1993 cu un brevet privind „ Conversia enzimatică in vitro a proteinei de legare a vitaminei D umane glicozilate într-un factor puternic de activare a macrofagelor ” [38] . Gc purificat din sânge [39] a fost tratat cu β-galactozidază imobilizată pe coloană (EC 3.2.1.23) de la Escherichia coli și sialidază din Vibrio cholerae sau Arthrobacter ureafaciens(toate de la Boehringer), după care preparatul GcMAF a fost sterilizat prin filtrare. Soluția salină a fost administrată (intramuscular sau intravenos; 30 până la 35 ng GcMAF la fiecare trei până la cinci zile) unui singur individ (Yamamoto sau unul dintre colegii săi?), rezultând un nivel semnificativ și de durată de activare a macrofagelor .
Studiile pacienților lui Yamamoto
Primele rezultate ale pacientului au fost descrise în 2002 într-o cerere de brevet [40] intitulată „Prepararea factorilor potenti de activare a macrofagelor derivate din proteina clonată de legare a vitaminei D și domeniul său și utilizarea lor terapeutică pentru cancer, infecție HIV și osteopetroză ”. Brevetul a fost depus la 19 martie 1996, dar a fost publicat doar 6 ani mai târziu (25 iunie 2002). Pentru a monitoriza efectul terapeutic, activitatea serului pacientului pentru a transforma pNP-α-GalNAc (para-nitrofenil-α-GalNAc; incolor) la pH 6,0 în α-GalNAc plus pNP (para-nitrofenol; incolor la pH 6,0, dar galben). la pH 10) a fost măsurat în timpul tratamentului. Această activitate exo-glicohidrolază a fost semnificativ crescută la pacienți. Din 1997 înainte, Yamamoto a numit această activitate „nagalase” [35] .
Un alt brevet cel mai informativ [41] , intitulat „Determinarea activității alfa-N-acetilgalactosaminidazei”, a fost depus la 5 iunie 1996, dar publicat abia la 3 septembrie 2003. Acesta descria că, pentru a automatiza detectarea nivelurilor de nagalaze serice, monoclonale S-au utilizat anticorpi împotriva nagalazei țesutului canceros purificat sau a nagalazei din serul pacienților cu HIV-1/SIDA. Anticorpii au fost produși folosind tehnica hibridomului . Acest lucru a permis monitorizarea de rutină a nivelurilor de proteină nagalază din probe prin metoda ELISA sandwich. Cei doi anticorpi monoclonali nu au reacţionat încrucişat, astfel încât enzima nagalase de la pacienţii cu cancer a fost probabil diferită de cea a pacienţilor cu HIV-1/SIDA. Tehnica ELISA, folosind încă un alt anticorp monoclonal specific, a fost de asemenea aplicată pentru a monitoriza nivelurile de nagalază la pacienții cu gripă [42] , [43] , [44] .
Pentru pacienții cu cancer, metoda ELISA sandwich a determinat nivelurile de proteină nagalază printr-un test de culoare în ug antigen (NagAg, nagalază purificată din țesutul cancerului pulmonar) per ml ser/plasmă. În mod curios, Yamamoto a afirmat [42] că „Activitatea α-N-acetilglactosaminidazei din ser/plasmă a fost exprimată și ca produs al concentrației NagAg (µg) și 0,25 nmol/mg/min, deoarece am constatat că 1 µg din enzimă (NagAg) în ser are 0,25 nmol/mg/min de activitate enzimatică.”. Un extras din Tabelul 1 al acelui brevet este prezentat în Secțiunea S4, Tabelul S2. Astfel, cantitatea de nagalază (ca număr fără unități) determinată într-o probă de 1 ml prin ELISA a fost pur și simplu înmulțită cu 0,25 nmol/mg/min. Aceste unități (nmol/mg/min) au fost folosite în toate publicațiile lui Yamamoto, deși în niciuna dintre aceste lucrări cuvântul „ELISA” nu a fost menționat vreodată în text, doar uneori în referințe. După cum sa discutat înainte [8] , nivelurile nagalase menționate de Yamamoto pentru persoanele sănătoase (în nmol/min per mg proteină serică) sunt cu aproximativ două ordine de mărime mai mari decât cele determinate în măsurătorile directe ale activității (în nmol/min per ml de ser).
Dacă presupun, așa cum sa discutat în Secțiunea S11, că Naga6 este pur și simplu Naga4 cu o N-glicozilare modificată și un pH optim, dar cu cinetică enzimatică similară , atunci o estimare a concentrației sale serice (în µg.mL -1 ) poate fi făcută precum urmează. Activitatea normală a Naga6 seric (cu 2,4-dinitrofenol-GalNAc, pH 5,8) este de cca. 0,035 U.mL -1 [8] și activitatea specifică a Naga4 recombinant pur (cu pNP-GalNac, pH 4,5) este de 20,3 U.mg -1 [45] . Aceasta dă o concentrație serică a proteinei Naga6 de cca. 1,7 ug.mL- 1 . Această valoare este de același ordin de mărime cu nivelul nagalazei menționat de Yamamoto în serul de la indivizi sănătoși (3,9 µg.mL -1 [42]). Indiferent de unitățile (impare), este cea care contează modificarea valorii numerice a nivelului nagalazei în timpul imunoterapiei GcMAF.
Un dezavantaj al testului ELISA este că nu a putut fi aplicat direct pe plasmă/ser. Afinitatea de legare a anticorpilor pentru Naga6 este aparent inhibată de o substanță foarte încărcată, cu greutate moleculară mică din ser. Astfel, înainte de efectuarea testului ELISA, acest inhibitor a trebuit să fie îndepărtat din plasmă/ser prin tratament cu sulfat de amoniu. Precipitatul, obținut între 30% și 70% saturație cu sulfat de amoniu, a fost redizolvat și dializat extensiv înainte de testarea cu ELISA [41] . În opinia mea, epitopul anticorpului monoclonal utilizat ar putea consta într-o combinație de proteine și carbohidrați. În acest caz, inhibitorul ar putea fi o componentă majoră bogată în carbohidrați din ser, de exemplu proteoglicani precum condroitină 6-sulfat,keratan sulfat , heparină, dermatan sulfat sau hialuronat . Un tratament cu sulfat de amoniu nu a avut niciun efect asupra activității Naga6 determinate direct în ser [8] .
Yamamoto a folosit metoda ELISA pentru pacienții cu o mare varietate de cancere, precum și pentru indivizi sănătoși. Aceasta înseamnă că anticorpul monoclonal produs împotriva nagalazei purificate din țesutul cancerului pulmonar [42] a reacționat în mod specific cu nagalaza din toate aceste surse. Prin urmare, concluzionez că nagalaza din plasmă/ser de la toți pacienții cu cancer trebuie să fie una și aceeași proteină și că aceasta este prezentă și în serul de la indivizi sănătoși. Cu toate acestea, Yamamoto a raportat întotdeauna, dar nu a arătat, că nivelul de activitate în serul indivizilor sănătoși se datorează α-galactozidazei și nu nagalazei. El a afirmat [1] „Aceasta este activitatea enzimatică a α-galactozidazei care poate cataboliza substratul cromogen.(adică p-nitrofenil N-acetil-α-D-galactozaminidă) pentru Nagalase.”. Acest lucru este incorect, deoarece s-a demonstrat ulterior că α-galactozidaza umană recombinantă (α-Gal, EC 3.2.1.22) nu a prezentat niciun fel de activitate cu pNP-α-GaNAc [45] .
Efectele curative ale GcMAF la pacienții cu cancer de prostată, de sân sau de colon , leucemie sau HIV-1, pentru care tratamentele convenționale (chirurgie, iradiere γ și/sau chimioterapie) nu mai erau eficiente, au fost publicate pentru prima dată ca o serie de cifre . 42] folosind nivelurile serice de nagalaza ca monitor. Un set mai elaborat de cifre/date, dintr-un studiu cu peste 500 de pacienți, a apărut în 2002 [40], deși acel brevet a fost depus la 19 martie 1996. Brevetul a afirmat că „După 25 de administrări săptămânale de 100 ng GcMAF, majoritatea (>90%) pacienților cu cancer de prostată și de sân au prezentat niveluri nesemnificativ scăzute ale enzimei serice. Un rezultat similar a fost au fost observate, de asemenea, după 35 de administrări de GcMAF la pacienții cu cancer de colon. Efecte curative similare ale GcMAF asupra cancerelor plămânilor, ficatului, stomacului, creierului, vezicii urinare, rinichilor, uterului, ovarian, laringelui, esofagului, oral și cancerelor de piele au fost observate.”
Răspunsuri în lumea științifică și în mass-media publică
Pentru majoritatea comunității academice, efectele GcMAF la pacienții cu cancer, așa cum sunt descrise în brevetul din 2002 [40] , vor fi trecut neobservate. În plus, nu a existat niciun interes aparent al companiilor farmaceutice pentru acest brevet sau pentru alte brevete ale Yamamoto. Acest lucru l-a determinat pe investigatorul principal, poate într-o încercare disperată de a obține atenție, să publice aceste constatări de la începutul anilor 1990 în patru lucrări regulate în 2008/2009 [1] , [2] , [3] , [4] . Un exemplu de cifră din brevetul din 2002 (depus la 19 martie 1996; publicat pe 25 iunie 2002) este prezentat în Fig. 3 , unde este comparată cu o cifră a unei lucrări din 2008 [1]. Comparații similare pot fi făcute pentru cifrele privind pacienții cu cancer colorectal sau mamar sau cu HIV-1/SIDA. Într-adevăr, cele patru lucrări din 2008/2009 au primit destul de multă atenție mass-media la nivel mondial. Cu toate acestea, după câțiva ani, lucrările au fost puternic criticate de Ugarte et al [46] . cu comentarii de genul „ Niciun lider de opinie cheie nu a validat utilizarea sa în oncologie. ” și ” Aceste rezultate nu pot fi validate științific, deoarece contrazic principiile stabilite în oncologie.” Comentariul meu la aceasta este că există numeroase exemple de descoperiri majore în știință care au fost respinse folosind astfel de argumente, deoarece nu se încadrau în ideile actuale ale comunității științifice de vârf. În plus, autorii au menționat câteva motive administrative și tehnice suspectate de nereguli. Acest lucru a dus la retragerea de către editori a trei dintre aceste lucrări Yamamoto. Ugarte et al [46] . nu a făcut niciun efort să menționeze niciuna dintre lucrările anterioare ale lui Yamamoto.

GcMAF este un activator aproape stoichiometric al macrofagelor
Convertind cantitățile de proteină GcMAF în numărul real de molecule ale acestui activator, am ajuns la concluzia că GcMAF este într-adevăr un activator fantastic și foarte specific al macrofagelor. O cantitate de 100 ng GcMAF , cu o greutate moleculară aparentă (Mr ) de 51,2 kDa în 5,5 L de sânge (volum de sânge la adulți), dă o concentrație de 0,355 pM. Presupunând un grad de glicozilare GalNAc la T418 de până la 2% (mol.mol- 1 ) [ 18 , 20 , 31 , 47 ], concentrația moleculelor active GcMAF este de 7,1 fM (0,0071 pM). Cu numărul lui Avogadro (1 mol conține 6.0221.10 23molecule), aceasta se ridică la 4.276.10 9 molecule de GcMAF activ într-un L de sânge. Sângele conține 0,15,10 9 până la 0,6,10 9 monocite pe litru, astfel încât acest lucru ar da 7 până la 29 de molecule active GcMAF per monocit. Chiar și atunci când glicozilarea GalNAc a T418 ar fi de numai 1% (mol.mol -1 ) [ 18 , 47 ], ar mai exista 4 până la 14 molecule de GcMAF activ per monocit. Acest exemplu demonstrează, de asemenea, specificitatea incredibilă a GcMAF: 3,5 până la 7 fM se pot lega și activa macrofagele pe un fundal de 6 uM Gc, adică o diferență de nouă ordine de mărime. Chiar și administrarea a 30 până la 35 ng GcMAF a indus o activare vizibilă a macrofagelor sistemice [38] .
Efectul GcMAF administrat la pacienții cu cancer este rapid; interacționează cu macrofagele sistemice în cca. 30 min [35] . În plus, injecția intramusculară a dus la o creștere de 40 de ori a numărului de macrofage activate sistemic în 4 zile [1] , în timp ce cu administrarea intravenoasă acest număr a crescut de peste 100 de ori în 2 zile [5] .
Yamamoto a raportat că efectul injecțiilor cu 500 ng la pacienți nu diferă cu mult de cel al 100 ng [48] . Cu experimentul in vitro s-a observat că efectul de activare a macrofagelor al GcMAF a scăzut în mod clar la concentrații mai mari și chiar a devenit puternic inhibitor (Tabelul III din [14] ). Acest efect a fost confirmat de alți investigatori [49] , [50] , [51] . Am vizualizat rezultatele lui Yamamoto în Fig. 4 . Un grafic al efectului de activare față de logaritmul concentrației GcMAF arată o curbă în formă de clopot. Ca biochimist, acest lucru mi-a amintit de modelul tipic de inhibare a substratului într-un test enzimatic [52]. Astfel, la concentrații mari GcMAF se poate lega aparent la un al doilea situs pe macrofage (legare slabă) unde inhibă complet efectul de activare al GcMAF legat la locul primar (legare puternică).

Tumorile rău intenționate evadează sistemul imunitar prin dezactivarea locală a răspunsului inflamator
Observații vechi la animale
În opinia mea, într-un experiment clasic pe model animal din 1962 s-a arătat că răspunsul inflamator la un corp străin, adică. un fir de cusut din bumbac negru implantat în tumori transplantabile de rozătoare la șoareci sau șobolani, a fost nesemnificativ în comparație cu răspunsul unui astfel de fir implantat în alte țesuturi la același animal [53] (vezi Secțiunea S5.1). Astfel, răspunsul imun a fost dezactivat numai în cadrul tumorii și în mediul ei imediat.
Explicația lui Yamamoto: tumorile evadează sistemul imunitar deoarece excretă nagalază care degradează precursorul GcMAF (dar nu GcMAF injectat)
Yamamoto și colab. [ 29 , [54] , [55] , [56] , [57] ] au propus că nivelurile serice crescute de nagalază inactivează toate moleculele precursoare ale GcMAF în sânge printr-o activitate de endo-glicohidrolază. Consultați Secțiunea S5.2 pentru detalii. Cu toate acestea, Borges et al. [ 20 , 31 ]., analizând serul pacienților cu cancer cu spectrometrie de masă, a arătat că acest lucru este incorect (vezi Secțiunea S9).
Interpretarea mea despre degradarea „ precursorului ” este mai degrabă că GcMAF produs local de celulele B și T din jurul unei tumori este foarte inactivat de nivelurile ridicate de nagalază (activitate exo-glicohidrolazei) excretată în interiorul și în jurul tumorilor. Nagalaza din sânge nu are niciun efect asupra GcMAF injectat în altă parte a corpului din motivele discutate în secțiunea S.5.2.
Ceea ce este necesar este o serie de experimente enzimologice clare cu Naga6 purificat, folosind Gc2 și GcMAF purificat (din Gc2 recombinant cu un grad cunoscut de glicozilare la T418) ca substraturi. Acest lucru poate răspunde la întrebări despre activitatea endo-vs. exo-glicohidrolazei și cu privire la valorile reale Km și V max ale Naga6 pentru Gc2 și GcMAF.
Îndepărtarea chirurgicală a tumorilor și metastazelor scade rapid nivelurile de nagalază și crește nivelurile de „precursori” GcMAF în ser
Yamamoto a demonstrat [56] că îndepărtarea chirurgicală a tumorii primare a dus la o scădere majoră a nivelului seric de nagalază în decurs de o zi. În același timp, „ activitatea precursoare” a crescut considerabil. Acest lucru este descris în Secțiunea S5.3, Fig. S9. Concentrația nagalazei în ser este astfel un echilibru între ratele de producție de către tumoră plus metastaze și îndepărtarea acesteia din sânge de către organism. Pe această bază se poate estimați că concentrația de nagalază (sau orice alt factor care duce la inactivarea GcMAF produs local) în interiorul și în jurul unei tumori, având un diametru de 1 cm, este cu aproximativ patru ordine de mărime mai mare decât concentrația din ser (la un adult cu 5,5 Sânge L). Acest lucru aparent permite tumorii (și metastazelor) să degradeze GcMAF produs local. Cu toate acestea, macrofagele activate în altă parte a corpului prin GcMAF injectat nu vor fi inactivate în acest fel.
Comparația nivelurilor serice ale nagalazei și markerilor tumorali tradiționali în timpul imunoterapiei cu GcMAF
Yamamoto a raportat o serie de studii în care nivelurile de nagalază și unul sau mai mulți markeri tradiționali de cancer au fost monitorizate în serul pacientilor cu cancer de sân. Pacienții au primit o injecție săptămânală cu 100 ng GcMAF ca singur tratament [3] . Am vizualizat unul dintre tabelele din acea lucrare din Fig. 5 . Se poate observa că tratamentul a dus la o scădere simultană a nivelurilor de nagalază și markeri tumorali. Acest lucru este de acord cu concluzia lui Yamamoto că nagalase este o măsură a sarcinii tumorale.

Situația este diferită pentru cancerul de prostată. În acest caz, markerul utilizat în prezent este PSA (antigen specific de prostată; Ser-endopeptidaza kalikrein-3; EC 3.4.21.77). PSA este sintetizat în epiteliul de prostată [ 58 , 59 ], dar a fost detectat și în glandele salivare , creier, sân și alte țesuturi, deși cu o concentrație mult mai mică (două ordine de mărime) [60] . Concentrația sa în lichidul seminal uman (ejaculat) este de 0,5-2 mg/mL [ 58 , 61 ], care este cu peste cinci ordine de mărime mai mare decât nivelul PSA (0-4 ng/mL) în serul bărbaților sănătoși. Scurgeri minuscule din prostată induse de exemplu de presiune mecanică, infecție (prostată) sauhiperplazia benignă a prostatei , poate duce la niveluri serice crescute de PSA. Prin urmare, a fost pus la îndoială dacă PSA este un marker de încredere pentru cancerul de prostată. Niveluri de PSA de 8-12 ng/mL au fost găsite la mulți bărbați fără semne de cancer [ 62 , 63 ] (vezi Fig. S5 în Secțiunea S6).
Yamamoto a urmărit nivelurile de nagalază și PSA în ser de la pacienții cu cancer de prostată în timpul monoterapiei cu 100 ng GcMAF pe săptămână ( Fig. 6 ). Când prostata a fost îndepărtată (prostatectomie) înainte de a începe terapia ( Fig. 6 , graficele de jos), nivelurile de nagalază și PSA au scăzut ca în Fig. 5 . Scăderea nivelurilor de nagalază s-a datorat probabil metastazelor, deoarece îndepărtarea tumorii duce la niveluri normale în 24 de ore [56] (vezi Fig. S4 în Secțiunea S5.3). Cu toate acestea, atunci când prostata nu a fost îndepărtată, nivelul nagalazei a scăzut ca de obicei, dar nivelul PSA nu a scăzut ( Fig. 6, graficele de sus). Aparent, celulele tumorale producătoare de Naga6 au fost atacate și îndepărtate de macrofagele activate, dar alte modificări și/sau daune cauzate de tumori au fost încă acolo și PSA a continuat să se scurgă din prostată. Observați nivelurile medii absolute ridicate de PSA din Fig. 6 pentru pacienții fără prostatectomie : pentru A1 26,5 ng/ml, pentru A2 17,8 ng/ml și pentru A3 61,0 ng/ml. Potrivit lui Yamamoto, ultimii pacienți nu au prezentat alte simptome de cancer timp de cel puțin 7 ani după oprirea tratamentului cu GcMAF. Acest lucru mi-a amintit de ceea ce Warburg a notat în 1955 [64] unde a afirmat: „Ebenso gehören hierher die ruhenden Krebszellen der menschlichen Prostata, die nach HAMPERL im hohen Alter in fast 100% der untersuchten Fälle gefunden werden, ohne daß sie klinisch in Erscheinung treten./De aici aparțin și celulele canceroase latente ale prostatei umane, care, potrivit lui HAMPERL, se găsesc în aproape 100% din cazurile examinate la bătrânețe fără a avea un aspect clinic./ „.

Scăderea nivelului de nagalază la pacienții olandezi cu cancer în timpul imunoterapiei GcMAF
Am primit o serie de date de la un medic olandez care a încercat să vindece cancerul la 33 dintre pacienții săi prin aplicarea imunoterapiei GcMAF. Diagramele de timp nagalase de la 8 dintre acești pacienți sunt comparate cu un grafic al studiilor lui Yamamoto (vezi Fig. S6 în Secțiunea S7). Aceste date au confirmat în mod clar eficiența terapiei GcMAF de la Yamamoto.
Serul de la indivizi sănătoși și de la pacienții cu cancer arată ambele o activitate Naga6 clară
Am arătat că serul de la indivizi umani conține patru activități Naga care diferă în pH-ul optim (pH 4, 5,2, 5,8 și 8) [ 7 , 8 ]. Au existat diferențe cinetice clare între activitatea la pH 4 (Naga4) și celelalte. Acest lucru este elaborat în Secțiunea S8. Concluzia mea a fost că activitatea la pH 5,8 (pe care o numesc Naga6) este nagalază.
Surse de nagalază în țesutul tumoral și virușii patogeni ai anvelopei conform Yamamoto
După cum este descris mai sus, Yamamoto a arătat fără îndoială că tumorile rău intenționate sunt sursa nivelurilor crescute de Naga6. Cu toate acestea, Yamamoto a mai raportat că serul pacienților cu HIV-1/SIDA a crescut adesea activitatea Naga6 [65] . În plus, el a arătat că, în acel caz, sursa activității a fost ascunsă (latentă) în glicoproteina gp160 din plicul virusului HIV-1 (în prezent, adesea numită proteina spike). Această proteină este direct implicată în atașarea acestui virus înveliș la celula țintă. Odată legată, proteina gp160 este scindată (de către endoproteaza furina din celula țintă) în două proteine: gp120 și gp41. Acesta din urmă, legat de membrana virusului, provoacă astfel o fuziune cu membrana celulei țintă, permițând inserareagenomul viral în celula țintă. Proteina gp120 solubilă este eliberată în sângele pacientului.
S-a demonstrat că proteina gp160 recombinată achiziționată nu a avut activitate Naga6, dar când a fost tratată cu tripsină a fost detectată o activitate semnificativă [65] . Gp120 recombinant a avut, de asemenea, o activitate clară a nagalazei (testată ca exo-glicohidrolază), în timp ce proteina gp41 nu a avut.
Yamamoto a mai raportat că glicoproteinele similare ale anvelopei (proteine cu vârf) de la diferite alte viruși patogeni au avut, de asemenea, activități latente de nagalază. Astfel, proteina HA (hemaglutinină) a gripei [44] , proteina de fuziune (F) a rujeolei și rubeolei (nepublicate) au toate nagalaza (latentă) în glicoproteinele lor. Activitățile lor nagalaze ar putea fi demascate prin clivaj proteolitic, de exemplu, proteina HA1, scindată din proteina HA, a arătat activitate [ 44 , 65 ]. Aceste constatări sunt în acord cu rapoartele originale ale lui Yamamoto, conform cărora nu există o reacție încrucișată a anticorpilor monoclonali .crescut împotriva activităților nagalazei (purificate) de la pacienții cu cancer și pacienții infectați cu HIV-1, virusul Epstein-Barr sau herpes [42] . Astfel, activitățile nagalazei de la pacienții cu cancer și de la pacienții infectați cu diferiți viruși ai anvelopei se datorează tuturor proteinelor diferite.
Pasquato și colab . [66] . a revizuit mecanismul de infecție a diferitelor viruși patogeni umani de înveliș și a comparat aranjamentul domeniului mai multor glicoproteine virale. Multe dintre aceste virusuri posedă glicoproteine similare de anvelopă active de fuziune care trebuie activate de către proprotein convertaze specifice (endoproteaze Ser dependente de Ca2 + ; EC 3.4.21) din celula țintă. Rețineți că virusul SARS-CoV-2 (coronavirusul sindromului respirator acut sever) este, de asemenea, un virus înveliș cu glicoproteine asemănătoare vârfurilor.
Pentru a găsi un posibil indiciu pentru activitatea Naga6 latentă, am comparat mai detaliat secvențele de aminoacizi ale proteinelor de legare (care sunt eliberate după infecție) de la șase virusuri diferite de înveliș (cu Clustal X [67] ). Cu toate acestea, în acord cu constatările lui Rey și Lok [68] , nu au existat absolut nicio asemănare. Prin urmare, soluția acestei întrebări poate fi găsită în structurile 3D ale acestor proteine de legare. Am explorat pe larg această posibilitate, iar rezultatele sunt descrise în Anexă. Concluzia mea principală este că un presupus sit activ de nagalază poate fi descoperit în glicoproteinele unui număr de viruși din plic.
Analize spectrometrice de masă ale glicozilațiilor în Gc și GcMAF
Yamamoto a descris întotdeauna că pacienții cu cancer sau pacienții infectați cu viruși patogeni de înveliș, aveau niveluri reduse ale „ precursorului ” GcMAF în serul lor. Termenul ” precursor ” a fost utilizat pentru formele glicozilate de Gc din ser. S-a propus, dar nu a fost demonstrat, că glicozilarea acestui precursor prin activitatea serică crescută a nagalazei la pacienți (presupus a fi o endo-glicohidrolază) a condus la eșecul activării macrofagelor. După 2008, acest lucru a fost investigat de mai multe grupuri (descris în secțiunea S9). Concluzia a fost că gradul detectabil de glicozilare Gc în ser de la pacienții cu cancer nu diferă de cel la indivizii sănătoși.
Cercetări recente privind imunoterapia GcMAF
În Secțiunea S10 am rezumat un interes recent și reînnoit pentru aplicarea imunoterapiei pentru cancer cu GcMAF. Yamamoto a raportat că GcMAF ajută, de asemenea, la combaterea infecțiilor cu o serie de viruși din plic. Acesta este acum testat pentru SARS-CoV-2, așa cum este menționat în secțiunea S10.
Discuţie
Este nagalaza produsă de celulele canceroase, de macrofagele asociate tumorilor (TAM) sau de ambele?
Studiile lui Yamamoto nu lasă nicio îndoială că tumorile maligne sunt sursa nagalazei. Între timp, s-a stabilit că tumorile emergente recrutează adesea celule imune și că tumorile maligne solide pot consta din celule imune dobândite pentru până la 50% din masa lor. Cele mai multe dintre aceste celule imunitare recrutate sunt macrofage. În 2002, Yamamoto a publicat că la gazdele purtătoare de tumori, GcMAF activează macrofagele tumoricide. În plus, au fost prezentate rezultate care sugerează că GcMAF ar putea inhiba și angiogeneza indusă de celulele endoteliale . În plus, s-a presupus că macrofagele asociate tumorilor (TAM) pot induce angiogeneza [69] .
Se presupune acum că profilul de expresie al TAM-urilor a fost modificat de celulele canceroase în așa fel încât să ajute tumora să crească și să promoveze angiogeneza. De asemenea, ele induc secreția de substanțe (a/o citokine) care inactivează sistemul imunitar în mediul imediat al tumorii. În opinia mea, aceasta este și cauza inactivării GcMAF produsă local de către celulele B și T. În prezent, macrofagele tumoricide sunt numite macrofage asemănătoare M1, în timp ce TAM-urile sunt denumite și macrofage asemănătoare M2 [70] , [71] , [72] , [73]. Proprietățile macrofagelor (de exemplu, profilul de expresie, transcriptozomul) pot fi foarte diverse și constituie un continuum de multe tipuri de macrofage variind de la macrofage M1 (anti-tumorale) la M2 (pro-tumorale). Această plasticitate a fost investigată în mare parte în experimente in vitro. O varietate de proteine poate determina dacă monocitele se transformă în macrofage de tip M1 sau de tip M2. In vitro, lipopolizaharidele (LPS) plus interferon-gamma (IFNγ) pot transforma monocitele în macrofage de tip M1, în timp ce interleukina-4 sau interleukina-13 le pot transforma în macrofage asemănătoare M2. În plus, factorii de stimulare a coloniilor de macrofage (CSF) pot schimba monocitele în macrofage de tip M1 (CSF-2) sau de tip M2 (CSF-1), vezi de exemplu [ 72 , 74 ].].. Plasticitatea macrofagelor este bine cunoscută în vindecarea rănilor (vezi de exemplu [75] .) și a fost mult timp comparată cu acțiunile lor în tumori [76] .
Acest lucru duce apoi la întrebarea dacă nivelurile crescute de Naga6 în ser, raportate de Yamamoto pentru o mare varietate de pacienți cu cancer, se datorează secreției de către celulele canceroase, de către celulele imune recrutate sau de ambele. Mai multe informații asupra acestor întrebări pot fi obținute prin studierea profilurilor de secreție (concentrându-se pe Naga4 și Naga6) ale liniilor de celule canceroase și ale macrofagelor asemănătoare M2. Trebuie reținut, totuși, că proprietățile macrofagelor, derivate din monocite în studiile in vitro pot diferi de la un experiment la altul. În plus, s-a raportat că cunoștințele, obținute din aceste experimente in vitro, pot diferi mult de cele ale experimentelor in vivo [77] .
Sugestia mea ar fi să se efectueze experimente histochimice cu cupe tumorale folosind X-GalNAc (X, 5-bromo-4-cloro-3-indoxyl) la pH 5,8. Acest lucru poate oferi informații mai detaliate despre locurile exacte ale activității Naga6 în diferitele celule tumorale. Tehnica a fost introdusă cu mult timp în urmă [78] și a fost utilizată pe scară largă pentru a localiza situsurile enzimelor precum glicozidaze, esterazele sau fosfatazele din celule și virusuri [79] .
Teza mea: nagalase (Naga6) este Naga4 cu o N-glicozilare alterată
Yamamoto nu a dezvăluit niciodată proprietățile preparatului purificat de nagalază din țesutul cancerului pulmonar, pe care l-a folosit pentru a prepara anticorpi monoclonali. Trebuie să fi folosit SDS-PAGE pentru a urma procedura de purificare, așa că M r al nagalazei îi era cunoscut. Același lucru este valabil și pentru nagalazele purificate din serul pacienților infectați cu virusuri patogeni de înveliș. În secțiunea S11 am prezentat date care m-au condus la teza că Naga6 ar putea fi doar o enzimă Naga4 cu o N-glicozilare aberantă care afectează unele dintre principalele sale proprietăți, precum și excreția. Analiza secvenței și glicozilare a unei enzime Naga6 purificate poate rezolva această întrebare.
Imunoterapia cu GcMAF este, în opinia mea, superioară oricărui alt imunotratament pentru debutul cancerului
În literatura de specialitate, termenul „imunoterapie” (sau terapie biologică) pentru tratamentul general al cancerului include inhibitori ai punctelor de control imun, terapia celulară imună, anticorpi și vaccinuri terapeutice, precum și agenți de modulare a imunității (de exemplu, Bacilul Calmette-Guérin, BCG) [80] , [81] , [82] . Aproape toate aceste terapii au efecte adverse potențial grave. În 2020, vaccinurile ARNm împotriva virusului SARS-CoV-2 au deschis un nou capitol în imunoterapia umană. La animale, există mai multă experiență cu metoda ARNm [83] . În cazul aplicațiilor umane, trebuie încă așteptat dacă există posibile efecte adverse pe termen scurt și/sau lung. Imunoterapia cu GcMAF nu are efecte adverse [ 4 , 80 ]. Este, de asemenea, luat în considerare pentru combaterea SARS-CoV-2 [84] și deja în studiu cu 97 de pacienți în Italia și 600 de pacienți în Ucraina ( www.clinicaltrials.gov ; NCT04845971 și, respectiv, NCT04762628).
În ultimul deceniu, a fost demonstrată existența celulelor stem canceroase (CSC) [85] , [86] , [87] . Acest lucru poate explica de ce, după terapiile convenționale pentru cancer, recurența este adesea observată: CSC-urile au capacitatea de a iniția din nou creșterea tumorii. Rezultatele lui Yamamoto (în special cele raportate în lucrările retractate din 2008/2009) sugerează cu tărie că sistemul imunitar stimulat de GcMAF poate fi capabil să elimine și ultimele celule stem canceroase reziduale.
Concluzii finale
(a) Ar trebui să se verifice cu fermitate dacă nivelurile crescute de nagalază la pacienții cu cancer, așa cum au fost determinate de Yamamoto printr-o cuantificare indirectă , dar sensibilă și specifică a proteinelor (ELISA), pot fi detectate și prin măsurători directe ale activității, de exemplu prin metoda descrisă în 2017. 7 , 8 ]. Aceasta poate fi efectuată numai cu pacienții înainte de începerea oricărui tratament sau la pacienții la care toate tratamentele au fost întrerupte timp de cel puțin 4 săptămâni. Măsurarea directă a activității poate fi utilizată fără discernământ, adică pentru pacienții cu cancer sau pentru pacienții infectați cu o varietate de virusuri patogeni de înveliș (HIV-1, gripă, rubeolă , rujeolă ).și poate SARS-CoV-2). Pentru metoda ELISA, anticorpii monoclonali împotriva activității Naga6 purificate a fiecărui tip individual de boală trebuie să fie pregătiți prin tehnica hibridomului .
(b) Dacă (a) este adevărată, atunci este recomandabil să se determine în mod regulat (la fiecare 6 până la 12 luni) activitatea Naga6 serică a adulților prin metoda directă . În special la persoanele în vârstă, nivelurile ridicate de Naga6 sunt indicative pentru neoplasmele emergente, nedorite, care încearcă să se sustragă sistemului imunitar și pentru infecțiile cu virusuri patogeni ale anvelopei. Imunoterapia cu GcMAF va activa direct macrofagele sistemice care vor ataca sursele nedorite ale nivelurilor crescute de nagalaze fără discernământ. În plus, astfel de macrofage activate pot distruge celulele stem canceroase.
(c) Activitatea MAF a GcMAF se bazează pe prezența unui singur reziduu GalNAc atașat la T418 în Gc. Când Gc este produs prin metode recombinante în E. coli , proteina Gc rezultată nu poate fi convertită în GcMAF activ [88] , deoarece E. coli nu poate glicozila proteinele. Exprimarea în gazde care pot efectua glicozilarea Gc donată, de exemplu, celule de insecte, drojdie de Pichia pastoris sau celule renale embrionare umane , poate avea ca rezultat o proteină Gc glicozilată care poate fi convertită cu succes în GcMAF. Tot mai bună ar fi expresia Gc2 în celulele ExpiCHO-S care sunt capabile să producă direct GcMAF [89]. Este de o importanță vitală să se determine procentul și tipul de glicozilare pe T418 pentru a prezice activitatea MAF așteptată a produsului. Până acum, acest lucru nu a fost niciodată menționat în niciunul dintre studiile lui Yamamoto sau alte studii, cu excepția poate de către Borges și Rehder pentru un preparat GcMAF achiziționat [32] .
(d) De asemenea, Gc bovin poate fi convertit în GcMAF, care poate activa macrofagele umane [15] . Această proteină este mai puțin potrivită pentru injectare la oameni, dar a fost aplicată prin ingestia orală pentru a stimula (indirect) sistemul imunitar prin direcționarea directă a macrofagelor rezidente în țesut, de exemplu, cavitatea bucală (inelul amigdalar al lui Waldeyer) sau plasturii Peyers din tractul gastro-interstițial (țesut limfoid asociat intestinului). Sub formă de spray poate activa macrofagele rezidente din plămâni (țesut limfoid asociat bronhiilor) [90]. Merită să încercăm dacă un spray cu GcMAF bovin ar putea ajuta la combaterea infecției cu virusul SARS-CoV-2. Se speră că Departamentele de Sănătate ale Guvernului vor permite în curând vânzarea GcMAF orală în farmacii ca un nutrient obișnuit pentru o funcție imunitară optimă, la fel ca vitaminele C și D 3 .
(e) Proteinele MAF, la fel de active ca GcMAF, pot fi, de asemenea, preparate ca o polipeptidă recombinantă cuprinzând cei 80 de aminoacizi C-terminal ai Gc (și chiar cei 40 de aminoacizi C-terminal). Astfel de peptide nu conțin domeniile Gc care sunt responsabile pentru legarea actinei, vitaminei D sau acizilor grași [ 36 , 37 ].
(f) Pacienții (cancer și non-cancer) cu niveluri plasmatice crescute de Naga6 au adesea niveluri scăzute de ascorbat (vitamina C) și calcidiol (25(OH)D3 , vitamina D3 ) . Performanța optimă a celulelor imune se bazează pe niveluri plasmatice suficiente de ascorbat și calcidiol. De fapt, am propus ca efectele acestor doi compuși asupra celulelor imune să fie reciproc dependente (Albracht, SPJ (2021) Ipoteza: dependența reciprocă de ascorbat și calcidiol pentru performanța optimă a sistemului imunitar, Ipoteza medicală, în curs de revizuire). Prin urmare, este necesar ca în timpul imunoterapiei cu GcMAF să se ia suficient acid ascorbic și calcidiol suplimentar pentru a menține nivelurile plasmatice la 70 până la 80 µM ascorbat (aport 200 până la 500 mg pe zi) și 80 până la 200 nM calcidiol (aport 50 până la 70 µg pe zi). ).
(h) Imunoterapia GcMAF poate fi de ajutor pacienților cu cancer în cazul în care tratamentele tradiționale pentru cancer au eșuat. Cu toate acestea, sistemul lor imunitar ar trebui să fie intact; GcMAF nu va fi eficient la pacienții anemici. De asemenea, deoarece sistemul imunitar are doar o capacitate limitată de a elimina tumorile maligne, masa tumorală în vrac ar trebui mai întâi îndepărtată prin intervenție chirurgicală și/sau distrusă prin iradiere γ. Orice tratament chimioterapeutic ar fi trebuit terminat timp de cel puțin 4 săptămâni, pentru a permite o refacere suficientă a sistemului imunitar.
(i) În cele mai multe cazuri, distrugerea organelor cauzată de tumori maligne nu va fi vindecată prin imunoterapie GcMAF. Prin urmare, apariția oricăror neoplasme maligne nedorite detectabile prin niveluri serice crescute de Naga6 (sau altfel) trebuie tratată imediat prin imunoterapie cu GcMAF plus ascorbat și calcidiol. Părerea mea, din literatură și din propria experiență, este că nivelurile ridicate de Naga6, oricare ar fi cauza, vor scădea practic întotdeauna printr-un astfel de tratament.
Finanțarea
Această cercetare nu a primit niciun grant specific de la agențiile de finanțare din sectoarele public, comercial sau non-profit.
Declarația contribuțiilor autorilor
SPJ Albracht este singurul autor
Declarație de interese concurente
Autorii declară că nu au interese financiare concurente cunoscute sau relații personale care ar fi putut părea să influențeze munca raportată în această lucrare.
Mulțumiri
Vreau să-l comemor pe regretatul Peter van Dijk, care a fost unul dintre forțele motrice în primele etape ale cercetării mele. Mulțumirile mele speciale îi sunt lui Steven W. Hofman (MD) pentru furnizarea datelor pentru Fig. S6, pentru interesul său continuu, entuziasmul și numeroasele discuții stimulatoare.
Anexa . Materiale suplimentare
Descărcați toate fișierele suplimentare incluse în acest articolAjutor
Descărcați: Descărcați fișierul PDF Acrobat (2MB)Descărcați: Descărcați fișierul PDF Acrobat (2MB)
Referințe
[1]N. Yamamoto , H. Suyama , N. Yamamoto
Imunoterapia pentru cancerul de prostată cu factor de activare a macrofagelor derivat din proteina Gc, GcMAFTransl. Oncol , 1 ( 2008 ) , p. 65 – 72
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[2]N. Yamamoto , H. Suyama , H. Nakazato , N. Yamamoto , Y. Koga
Imunoterapia cancerului colorectal metastatic cu factor de activare a macrofagelor derivat din proteinele care leagă vitamina D, GcMAFCancer Immunol. Immunother , 57 ( 2008 ) , p. 1007 – 1016 Se caută PDF…
CrossRefVedeți înregistrarea în ScopusGoogle Academic[3]N. Yamamoto , H. Suyama , N. Yamamoto , N. Ushijima
Imunoterapia pacienților cu cancer de sân metastatic cu factor de activare a macrofagelor derivate din proteinele care leagă vitamina D (GcMAF)Int. J. Cancer ( 2008 ) , pp. 461 – 467 Se caută PDF…
CrossRefVedeți înregistrarea în ScopusGoogle Academic[4]N. Yamamoto , N. Ushijima , Y. Koga
Imunoterapia pacienților infectați cu HIV cu factor de activare a macrofagilor derivat din proteina Gc (GcMAF)J. Med.Virol. , 81 ( 2009 ) , p. 16 – 26 Se caută PDF…
CrossRefVedeți înregistrarea în ScopusGoogle Academic[5]N. Yamamoto , M. Ueda , K. Hashinaka
Imunoterapia cancerului de sân cu factor de activare a macrofagelor derivate din proteina Gc, GcMAFCancer Res , 71 ( Suppl. 1 ) ( 2011 )Abstr. 5532
Google Academic[6]RJ Desnick , D. Schindler
Deficit de alfa-N-acetilgalactosaminidază: boala Schindler,CR Scriver , AL Beaudet , WS Sly , D. Valle , B. Childs , KW Kinzler , B. Vogelstein (eds.) , The Metabolic and Molecular Bases of Inherited Disease , voi. III , New York ( 2001 ) , p. 3483 – 3505
Vedeți înregistrarea în ScopusGoogle Academic[7]SPJ Albracht , E. Allon , J. Van Pelt
Exo -glicozidaze multiple în ser uman, așa cum au fost detectate cu substratul DNP-a-GalNAc. I. Un nou test pentru a- N – acetilgalactosaminidaza lizozomalăBBA Clin , 8 ( 2017 ) , p. 84 – 89
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[8]SPJ Albracht , J. Van Pelt
Exo -glicozidaze multiple în ser uman, așa cum au fost detectate cu substratul DNP-a-GalNAc. II. Trei activități asemănătoare a- N -acetilgalactosaminidazei în regiunea pH 5 până la 8BBA Clin , 8 ( 2017 ) , p. 90 – 96
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[9]DL Morton , FR Eilber , WL Joseph , WC Wood , E. Trahan , AS Ketcham
Factori imunologici în sarcoamele și melanoamele umane: o bază rațională pentru imunoterapieAnn. Chirurgie , 172 ( 1970 ) , p. 740 – 747 Se caută PDF…
CrossRefVedeți înregistrarea în ScopusGoogle Academic[10]N. Yamamoto , BZ Ngwenya , TW Sery , RA Pieringer
Activarea macrofagelor de către analogi eterici ai lizofosfolipidelorCancer Immunol. Imunalt. , 25 ( 1987 ) , p. 185 – 192
Vedeți înregistrarea în ScopusGoogle Academic[11]N. Yamamoto , BZ Ngwenya
Activarea macrofagelor peritoneale de șoarece de către lizofosfolipide și derivați eterici ai lipidelor și fosfolipidelor neutreCancer Res , 47 ( 1987 ) , p. 2008 – 2013
Vedeți înregistrarea în ScopusGoogle Academic[12]N. Yamamoto , DA St. Claire , S. Homma , BZ Ngwenya
Activarea macrofagelor de șoarece de către alchilgliceroli, produși de inflamație ai țesuturilor canceroaseCancer Res , 48 ( 1988 ) , p. 6044 – 6049
Vedeți înregistrarea în ScopusGoogle Academic[13]S. Homma , N. Yamamoto
Procesul de activare a macrofagelor după tratamentul in vitro al limfocitelor de șoarece cu dodecilglicerolClin. Exp. Imunol. , 79 ( 1990 ) , p. 307 – 313 Se caută PDF…
Vedeți înregistrarea în ScopusGoogle Academic[14]N. Yamamoto , S. Homma , I. Millman
Identificarea factorului seric necesar pentru activarea in vitro a macrofagelorJ Immunol , 147 ( 1991 ) , p. 273 – 280
Vedeți înregistrarea în ScopusGoogle Academic[15]N. Yamamoto , S. Homma
Proteina de legare a vitaminei D 3 (componentă specifică grupului) este un precursor al factorului semnal de activare a macrofagelor din limfocitele tratate cu lizofosfatidilcolinăProc. Natl. Acad. Sci. SUA , 88 ( 1991 ) , p. 8539 – 8543 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[16]RF Chun
Noi perspective asupra proteinei care leagă vitamina DCelulă. Biochim. Funct. , 30 ( 2012 ) , p. 445 – 456 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[17]J. Hirschfeld , B. Johnson , M. Rasmuson
Moștenirea unui nou sistem specific grupului demonstrat în serurile umane normale prin intermediul unei tehnici imuno-electroforeticeNatura , 185 ( 1960 ) , p. 931 – 932 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[18]M. Viau , J. Constans , H. Debray , J. Montreuil
Izolarea și caracterizarea lanțului O-glican al proteinei umane de legare a vitaminei DBiochim. Biophys Res. comun. , 117 ( 1983 ) , p. 324 – 331
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[19]M. Speeckaert , G. Huang , JR Delanghe , YEC Taes
Aspecte biologice și clinice ale proteinei de legare a vitaminei D (Gc-globulina) și polimorfismul acesteiaClin. Chim. Acta , 372 ( 2006 ) , p. 33 – 42
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[20]CR Borges , JW Jarvis , PE Oran , RW Nelson
Studiile populației privind microeterogeneitatea proteinelor de legare a vitaminei D prin spectrometrie de masă conduc la caracterizarea modelelor sale de O-glicozilare dependente de genotip.J. Proteom. Res. , 7 ( 2008 ) , p. 4143 – 4153 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[21]AC Heijboer , MA Blankenstein , IP Kema , MM Buijs
Precizia a 6 teste de rutină pentru 25-hidroxivitamina D: influența concentrației proteinei de legare a vitaminei DClinica. Chim. , 58 ( 2012 ) , p. 543 – 548 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[22]NE Cooke , J. Walgate , JG Haddad Jr.
Proteina de legare a serului uman pentru vitamina D și metaboliții săi. I Identificarea fizico-chimică și imunologică în țesuturile umaneJ. Biol. Chim. , 254 ( 1979 ) , p. 5958 – 5964
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[23]NE Cooke , J. Walgate , JG Haddad Jr.
Proteina de legare a serului uman pentru vitamina D și metaboliții săi. II Asociere specifică, de mare afinitate cu o proteină din țesutul nucleatJ. Biol. Chim. , 254 ( 1979 ) , p. 5965 – 5971
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[24]H. Van Baelen , R. Bouillon , P. De Moor
Proteina care leagă vitamina D (Gc-globulina) leagă actinaJ. Biol. Chim. , 255 ( 1980 ) , p. 2270 – 2272
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[25]TH Pihl , CS Jørgensen , E. Santoni-Rugiu , PS Leifsson , EW Hansen , I. Laursen , G. Houen
Farmacologia siguranței, toxicologia și evaluarea farmacocinetică a globulinei umane Gc (proteina care leagă vitamina D), de bazăClinica. Pharmacol. Toxicol. , 107 ( 2010 ) , p. 853 – 860 Vizualizați PDF
Vedeți înregistrarea în ScopusGoogle Academic[26]CS Jørgensen , FV Schiødt , B. Dahl , I. Laursen , G. Houen
Comparație dintre testele rachetă și imuno-electroforeză încrucișată pentru determinarea nivelului de complexare a actinei globulinei GcScand. Clin. laborator. Investi. , 67 ( 2007 ) , p. 767 – 777 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[27]FV Schiødt
Gc-globulina în bolile hepaticeDanisch Med. Taur. , 55 ( 2008 ) , p. 131 – 146
Vedeți înregistrarea în ScopusGoogle Academic[28]PJ Goldschmidt-Clermont , RM Galbraith , DL Emerson , PA Werner , AE Nel , WM Lee
Cuantificarea precisă a Gc nativ în ser și estimarea complexelor endogene de Gc:G-actină prin imunoelectroforeză rachetăClin. Chim. Acta , 148 ( 1985 ) , p. 173 – 183
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[29]N. Yamamoto , VR Naraparaju , SO Asbell
Glicozilarea proteinei serice care leagă vitamina D 3 duce la imunosupresie la pacienții cu cancerCancer Res , 56 ( 1996 ) , p. 2827 – 2831
Vedeți înregistrarea în ScopusGoogle Academic[30]N. Yamamoto
Definiția structurală a unui factor puternic de activare a macrofagelor derivat din proteina de legare a vitaminei D 3 cu activitate adjuvantă pentru producerea de anticorpiMol. Imunol. , 33 ( 1996 ) , p. 1157 – 1164
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[31]DS Rehder , RW Nelson , CR Borges
Starea de glicozilare a proteinei de legare a vitaminei D la pacienții cu cancerProt. Sci. , 18 ( 2009 ) , p. 2036 – 2042 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[32]CR Borges , DS Rehder
Structura glicanului a factorului de activare a macrofagului derivat din proteine Gc, așa cum este evidențiată de spectrometria de masăArc. Biochim. Biophys. , 606 ( 2016 ) , p. 167 – 179
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[33]N. Yamamoto , VR Naraparaju
Factorul de activare a macrofagelor bine definit din punct de vedere structural derivat din proteina de legare a vitaminei D3 are o activitate adjuvantă puternică pentru imunizareImunol. Celulă. Biol. , 76 ( 1998 ) , p. 237 – 244
Vedeți înregistrarea în ScopusGoogle Academic[34]N. Yamamoto
Factori de activare a macrofagelor derivați din proteina de legare a vitaminei D donatăNumărul de brevet WIPO WO 96/40903 A1 ( 1996 )
Google Academic[35]N. Yamamoto , VR Naraparaju
Imunoterapia șoarecilor BALB/c purtători de tumoare de ascită Ehrlich cu factor de activare a macrofagelor derivate din proteina care leagă vitamina DCancer Res , 57 ( 1997 ) , p. 2187 – 2192
Vedeți înregistrarea în ScopusGoogle Academic[36]N. Swamy , JF Head , D. Weitz , R. Ray
Caracterizarea biochimică și cristalografică preliminară a legării vitaminei D de sterol și actină de către proteina umană care leagă vitamina DArc. Biochim. Biophys. , 402 ( 2002 ) , p. 14 – 23
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[37]C. Verboven , A. Rabijns , M. De Maeyer , H. Van Baelen , R. Bouillon , C. De Ranter
O bază structurală pentru caracteristicile unice de legare ale proteinei umane care leagă vitamina DStructura naturii. Biol. , 9 ( 2002 ) , p. 131 – 136
Vedeți înregistrarea în ScopusGoogle Academic[38]N. Yamamoto
Conversia enzimatică in vitro a proteinei umane glicozilate care leagă vitamina D la un factor puternic de activare a macrofagelorNumărul de brevet US 5 , 177 ( 002 ) ( 1993 )
Google Academic[39]RP Link , KL Perlman , EA Pierce , HK Schnoes , HF DeLuca
Purificarea proteinei de legare a vitaminei D a serului uman prin cromatografie cu 25-hidroxivitamina D3 – SepharoseAnal. Biochim. , 157 ( 1986 ) , p. 262 – 269
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[40]N. Yamamoto
Prepararea factorilor puternici de activare a macrofagelor derivați din proteina clonată de legare a vitaminei D și domeniul acesteia și utilizarea lor terapeutică pentru cancer, infecție cu HIV și osteopetrozăNumărul de brevet US , 6 ( 2002 )410.269 B1
Google Academic[41]N. Yamamoto
Determinarea activității alfa-N-acetilgalactosaminidazeiNumăr de brevet EP1340815 A2 ( 2003 )
Google Academic[42]N. Yamamoto, Testele ELISA de diagnostic și prognostic ale aN-acetilgalactosamindazei serice sau plasmei pentru cancer, Brevet numărul US 5.712.104 A, 1998.
Google Academic[43]N. Yamamoto, Testele ELISA de diagnostic și prognostic ale aN-acetilgalactosaminidazei serice pentru SIDA, Brevet numărul US 5.985.545 A, 1999.
Google Academic[44]N. Yamamoto , M. Urade
Semnificația patogenă a activității a- N – acetilgalactosaminidazei găsită în hemaglutinina virusului gripalMicrob. Infecta. , 7 ( 2005 ) , p. 674 – 681
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[45]IB Tomasic , MC Metcalf , AI Guce , NE Clark , SC Garman
Interconversia specificității enzimelor lizozomale umane asociate cu bolile Fabry și SchindlerJ. Biol. Chim. , 285 ( 2010 ) , p. 21560 – 21566
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[46]A. Ugarte , G. Bouche , L. Meheus
Incoerențe și fiabilitate îndoielnică a publicației „Imunoterapia cancerului colorectal metastatic cu activarea macrofagelor derivate din proteinele care leagă vitamina D, GcMAF” de Yamamoto și colab.Cancer Immunol. Imunalt. , 63 ( 2014 ) , p. 1347 – 1348 Se caută PDF…
CrossRefVedeți înregistrarea în ScopusGoogle Academic[47]T. Ravnsborg , DT Olsen , A. Hammerich-Thysen , M. Christiansen , G. Houen , P. Højrup
Glicozilarea și caracterizarea factorului de activare a macrofagelor Gc candidatBiochim. Biophys. Acta , 1804 ( 2010 ) , p. 909 – 917
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[48]N. Yamamoto
Factor de activare a macrofagelor pentru compoziții farmaceuticeNumărul de brevet OMPI WO 2012/137199 Al ( 2012 )
Google Academic[49]D. Kuchiike , Y. Uto , H. Mukai , N. Ishiyama , C. Abe , D. Tanaka , T. Kawai , K. Kubo , M. Mette , T. Inui , Y. Endo , H. Hori
Ser uman degalactozilat/dezialilat care conține GcMAF induce activitate fagocitară a macrofagelor și activitate antitumorală in vivoAnticancer Res , 33 ( 2013 ) , p. 2881 – 2885
Vedeți înregistrarea în ScopusGoogle Academic[50]M. Ishikawa , T. Inoue , T. Inui , D. Kuchiike , K. Kubo , Y. Uto , T. Nishikata
Un nou sistem de testare pentru activitatea factorului de activare a macrofagelor folosind o linie celulară umană U937Anticancer Res , 34 ( 2014 ) , p. 4577 – 4582
Vedeți înregistrarea în ScopusGoogle Academic[51]T. Inoue , M. Ishikawa , Y. Sumiya , H. Kohda , T. Inui , D. Kuchiike , K. Kubo , Y. Uto , T. Nishikata
Stabilirea unui sistem de analiză a factorului de activare a macrofagelor folosind linia celulară monocitară umană THP-1Anticancer Res , 35 ( 2015 ) , p. 4441 – 4446
Vedeți înregistrarea în ScopusGoogle Academic[52]HR Mahler , EH Cordes
Chimie biologicăHarper & Row, Ltd. , Londra, Marea Britanie ( 1967 )A treia editie
Google Academic[53]MJ Mahoney , J. Leighton
Răspunsul inflamator la un corp străin în cadrul tumorilor transplantabileCancer Res , 22 ( 1962 ) , p. 334 – 338
Vedeți înregistrarea în ScopusGoogle Academic[54]N. Yamamoto , VR Naraparaju , SM Srinivasula
Modificarea structurală a proteinei serice de legare a vitaminei D 3 și imunosupresia la pacienții cu SIDASIDA Res. Zumzet. Retrovir. , 11 ( 1995 ) , p. 1373 – 1378 Se caută PDF…
CrossRefVedeți înregistrarea în ScopusGoogle Academic[55]VR Naraparaju , RS Wimmers , RN Neil , PJ Orchard , N. Yamamoto
Originea imunosupresiei în leucemia juvenilă și eficacitatea terapeutică a factorului de activare a macrofagelor derivate din proteina de legare a vitaminei D3Proc. A.m. conf. univ. Cancer Res. , 37 ( 1996 ) , p. 213(Rezumat 1454)
Google Academic[56]N. Yamamoto , VR Naraparaju , M. Urade
Utilitatea prognostică a a- N – acetilgalactosaminidazei serice și a imunosupresiei au rezultat din glicozilarea proteinei Gc serice la pacienții cu cancer oralCancer Res , 57 ( 1997 ) , p. 295 – 299
Vedeți înregistrarea în ScopusGoogle Academic[57]M. Korbelik , VR Naraparaju , N. Yamamoto
Valoarea măsurării a- N – acetilgalactosaminidazei serice pentru evaluarea răspunsului tumoral la terapia radio- și fotodinamicăBritish J. Cancer , 77 ( 1998 ) , p. 1009 – 1014 Se caută PDF…
CrossRefVedeți înregistrarea în ScopusGoogle Academic[58]H. Lilja
O serin protează asemănătoare kalikreinei din lichidul prostatic scindează proteina predominantă a veziculelor seminaleJ. Clin. Investi. , 76 ( 1985 ) , p. 1899 – 1903 Se caută PDF…
CrossRefVedeți înregistrarea în ScopusGoogle Academic[59]DL Bilhartz , DJ Tindall , JE Oesterling
Antigenul specific prostatic și fosfataza acidă prostatică: caracteristici biomoleculare și fiziologiceUrologie , 38 ( 1991 ) , p. 95 – 102
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[60]MG Lawrence , J. Lai , JA Clements
Kalicreine pe steroizi: structura, funcția și reglarea hormonală a antigenului specific prostatic și locusul extins al kalikreineiEndocrine Rev , 31 ( 2010 ) , pp. 407 – 446 Se caută PDF…
CrossRefVedeți înregistrarea în ScopusGoogle Academic[61]H. Lilja
Structura, funcția și reglarea activității enzimatice a antigenului specific de prostatăLumea J. Urol. , 11 ( 1993 ) , p. 188 – 191
Vedeți înregistrarea în ScopusGoogle Academic[62]GP Murphy , RJ Barren , SJ Erickson , VA Bowes , RL Wolfert , G. Bartsch , H. Klocker , J. Pointner , A. Reissigl , DG McLeod , T. Douglas , T. Morgan , GM Kenny , H. Ragde , AL Boynton , EH Holmes
Evaluarea și compararea a doi noi markeri de carcinom de prostată. Antigenul specific prostatic liber și antigenul specific de membrană prostaticăCancer , 78 ( 1996 ) , p. 809 – 818 Se caută PDF…
Vedeți înregistrarea în ScopusGoogle Academic[63]J. Tosoian , S. Loeb
PSA și nu numai: trecutul, prezentul și viitorul biomarkerilor investigativi pentru cancerul de prostatăTheScientificWorldJOURNAL , 10 ( 2010 ) , p. 1919 – 1931 Se caută PDF…
CrossRefVedeți înregistrarea în ScopusGoogle Academic[64]O. Warburg
Über die Entstehung der KrebszellenNaturwissensch , 42 ( 1955 ) , p. 401 – 406
Vedeți înregistrarea în ScopusGoogle Academic[65]N. Yamamoto
Semnificația patogenă a activității a- N – acetilgalactosaminidazei găsită în glicoproteina gp160 de anvelopă a virusului imunodeficienței umane tip 1SIDA Res. Zumzet. Retrovir. , 22 ( 2006 ) , p. 262 – 271 Se caută PDF…
CrossRefVedeți înregistrarea în ScopusGoogle Academic[66]A. Pasquato , J. Ramos da Palma , C. Galan , NG Seidah , S. Kunz
Procesarea glicoproteinei învelișului viral de către proprotein convertazeAntiviral Res , 99 ( 2013 ) , pp. 49 – 60
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[67]JD Thompson , TJ Gibson , F. Plewniak , F. Jeanmougin , DG Higgins
Interfața CLUSTAL X windows: strategii flexibile pentru alinierea mai multor secvențe ajutate de instrumente de analiză a calitățiiNucl. Acizi Res. , 25 ( 1997 ) , p. 4876 – 4882
Google Academic[68]FA Rey , S.-M. Lok
Caracteristici comune ale virușilor înveliți și implicații pentru proiectarea imunogenului pentru vaccinurile de generație următoareCell , 172 ( 2018 ) , p. 1319 – 1334
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[69]S. Kanda , Y. Mochizuki , Y. Miyata , H. Kanetake , N. Yamamoto
Efectele factorului de activare a macrofagelor derivate din proteinele care leagă vitamina D3 (GcMAF) asupra angiogenezeiJ. Natl. Cancer Inst. , 94 ( 2002 ) , p. 1311 – 1319 Se caută PDF…
Vedeți înregistrarea în ScopusGoogle Academic[70]A. Mantovani , P. Allavena
Interacțiunea terapiilor anticanceroase cu macrofagele asociate tumorilorJ. Exp. Med. , 212 ( 2015 ) , p. 435 – 445 Se caută PDF…
CrossRefVedeți înregistrarea în ScopusGoogle Academic[71]X. Zheng , K. Turkowski , J. Mora , B. Brüne , W. Seeger , A. Weigert , R. Savai
Redirecționarea macrofagelor asociate tumorilor pentru a deveni efectori tumorici ca o nouă strategie pentru terapia canceruluiOncotarget , 8 ( 2017 ) , p. 48436 – 48452 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[72]P. Jeannin , L. Paolini , C. Adam , Y. Delneste
Rolurile LCR asupra polarizării funcționale a macrofagelor asociate tumorilorFEBS J , 285 ( 2017 ) , p. 680 – 699
Google Academic[73]A. Mantovani
Legătura inflamație – cancerFEBS J , 285 ( 2018 ) , p. 638 – 640 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[74]K. Rihawi , AD Ricci , A. Rizzo , S. Brocchi , G. Marasco , LV Pastore , FLR Llimpe , R. Golfieri , M. Renzulli
& Macrofage asociate cu tumori și micromediu inflamator în cancerul gastric: implicații translaționale noiInt. J. Mol. Sci. , 22 ( 2021 ) , p. 3805 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[75]S. Guo , LA DiPietro
Factorul care afectează vindecarea rănilorJ. Dent. Res. , 83 ( 2010 ) , p. 219 – 229 Vizualizați PDF
CrossRefGoogle Academic[76]HF Dvorak
Tumori: răni care nu se vindecă – O perspectivă istorică cu accent pe rolurile fundamentale ale creșterii permeabilității vasculare și ale coagulăriiSemin. Tromb. Hemost. , 45 ( 2019 ) , p. 576 – 592
Vedeți înregistrarea în ScopusGoogle Academic[77]M. Orecchioni , Y. Ghosheh , AB Pramod , K. Ley
Polarizarea macrofagelor: semnături diferite ale genelor în M1(LPS+) vs. clasic și M2(LPS-) vs. macrofage activate alternativFață. Imunol. , 10 ( 2019 ) , p. 1084 Vizualizați PDF
Vedeți înregistrarea în ScopusGoogle Academic[78]JP Horwitz , J. Chua , RJ Curby , AJ Tomson , MA Da Rooge , BE Fisher , J. Mauricio , I. Klundt
Substraturi pentru demonstrarea citochimică a activității enzimatice. I. Unele 3-indolil- b -D-glicopiranozide substituiteJ. Med. Chim. , 7 ( 1964 ) , p. 574 – 575 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[79]JA Kiernan
Substraturi indigogenice pentru detectarea și localizarea enzimelorBiotehnologie. Histochim. , 82 ( 2007 ) , p. 73 – 103 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[80]S. Akiyama , T. Inui
Imunoterapia cancerului în clinică: 2016Clin. Oncol. , 1 ( 2016 ) , p. 1135
Vedeți înregistrarea în ScopusGoogle Academic[81]CH June , RS O’Connor , OU Kawalekar , S. Ghassemi , MC Milone
Imunoterapia cu celule T CAR pentru cancerul umanScience , 359 ( 2018 ) , p. 1361 – 1365 Vizualizați PDF
CrossRefGoogle Academic[82]V. Mollica , A. Rizzo , R. Montironi , L. Cheng , F. Giunchi , R. Schiavina , M. Santoni , M. Fiorentino , A. Lopez-Beltran , E. Brunocilla , G. Brandi , F. Massari
& Strategii actuale și noi abordări terapeutice pentru carcinomul urotelial metastaticCancers (Basel) , 12 ( 2020 ) , p. 1449 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[83]N. Pardi , MJ Hogan , FW Porter , D. Weissman
Vaccinurile ARNm – o nouă eră în vaccinologieDrug Discov , 17 ( 2018 ) , p. 261 – 279 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[84]L. Spadera , M. Spadera
Rolul potențial al GcMAF în suprimarea severității răspunsurilor imune induse de COVID-19: lecție învățată de la HIVMed. Hyp , 144 ( 2020 ) , articolul 110293
ArticolDescărcați PDFVedeți înregistrarea în ScopusGoogle Academic[85]J. Chen , Y. Li , TS Yu , RM McKay , DK Burns , SG Kernie , LF Parada
O populație de celule restrânsă propaga creșterea glioblastomului după chimioterapieNature , 488 ( 2012 ) , p. 522 – 526 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[86]G. Driessens , B. Beck , A. Caauwe , BD Simons , C. Blanpain
Definirea modului de creștere a tumorii prin analiză clonalăNature , 488 ( 2012 ) , p. 527 – 530 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[87]AG Schepers , HJ Snippert , DE Stange , M. Van den Born , JH Van Es , M. Van de Wetering , H. Clevers
Trasarea liniei dezvăluie activitatea celulelor stem Lgr5 + în adenoamele intestinale de șoareceScience , 337 ( 2012 ) , p. 730 – 735 Vizualizați PDF
CrossRefVedeți înregistrarea în ScopusGoogle Academic[88]N. Swamy , S. Ghosh , GB Schneider , R. Ray
Factorul de activare proteină-macrofag de legare a vitaminei D exprimat de baculovirus (DBP- maf ) activează osteoclastele și legarea 25-hidroxivitamina D 3 nu influențează această activitateJ. Cell. Biochim. , 81 ( 2001 ) , p. 535 – 546
Vedeți înregistrarea în ScopusGoogle Academic[89]Y. Nabeshima , C. Abe , T. Kawauchi , T. Hiroi , Y. Uto , Y. Nabeshima
Metodă simplă pentru producția pe scară largă a factorului de activare a macrofagelor GcMAFSci. Rep , 10 ( 2020 ) , p. 19122 Vizualizați PDF
Vedeți înregistrarea în ScopusGoogle Academic[90]H. Amitani , RA Sloan , N. Sameshima , K. Yoneda , M. Amitani , A. Morinaga , Y. Uto , T. Inui , A. Inui , A. Asakawa
Dezvoltarea colostrului MAF și aplicarea sa clinicăNeuropsychiatry (Londra) , 7 ( 2017 ) , pp. 640 – 647
Vedeți înregistrarea în ScopusGoogle Academic[91]LR Otterbein , C. Cosio , P. Graceffa , R. Dominguez
Structuri cristaline ale proteinei care leagă vitamina D și complexul său cu actină: baza structurală a sistemului de absorbție a actineiProc. Natl. Acad. Sci. (SUA) , 99 ( 2002 ) , p. 8003 – 8008 Vizualizați PDF