Arhive etichetă | zinc

Rolul intervențiilor nutriționale în cancerul de prostată (review 2021)

Abstract

Rata mare de prevalență coroborată cu perioada lungă de latență a făcut cancerul de prostată (PCa) să fie un candidat atractiv și rezonabil pentru măsuri preventive. Până în prezent, au fost implementate și studiate mai multe intervenții dietetice și nutriționale cu scopul de a preveni dezvoltarea sau de a întârzia progresia PCa.

Restricția calorică însoțită de scăderea în greutate s-a dovedit a fi asociată cu o probabilitate scăzută de PCa agresiv. Suplimentele au jucat un rol major în intervențiile nutriționale. În timp ce genisteina și licopenul păreau promițătoare ca agenți preventivi, mineralele precum zincul și seleniul s-au dovedit a fi lipsite de efecte protectoare. Rolul vitaminelor a fost studiat pe larg, cu accent deosebit pe vitaminele cu proprietăți antioxidante.Datele referitoare la vitamina A și vitamina C au fost destul de controversate, iar efectele pozitive au fost de o amploare nesemnificativă. Vitamina E a fost asociată cu un risc scăzut de PCa la grupurile cu risc ridicat, cum ar fi fumătorii. Cu toate acestea, atunci când vine vorba de vitamina D, nivelurile serice ar putea afecta riscul de PCa. În timp ce deficiența acestei vitamine a fost asociată cu un risc crescut, nivelurile serice ridicate au impus riscul bolilor agresive. În ciuda efectelor aparent promițătoare ale măsurilor dietetice asupra PCa, nu s-ar putea face nicio recomandare fermă din cauza limitărilor studiilor și a dovezilor..

J Res Med Sci. 2021; 26: 29.Publicat online 2021 mai 27.

 doi:  10.4103 / jrms.JRMS_975_20 PMCID: PMC8305755 PMID: 34345240

Rolul intervențiilor nutriționale în cancerul de prostată: o revizuire

Mohammad Reza Nowroozi , Ehsan Ghaedi , 2, 3 Amir Behnamfar , Erfan Amini , Seyed Ali Momeni , Maryam Mahmoudi , Nima Rezaei , 4, 5, 6 Saied Bokaie , 7 și Laleh Sharifi 1, 5

Informații despre autor 

Note despre articol 

Informații privind drepturile de autor și licență 

INTRODUCERE

Există dovezi extinse legate de rolul diferiților nutrienți și diete în dezvoltarea cancerului de prostată (PCa). [ 1 , 2 ] De fapt, mai multe studii au arătat că o dietă sănătoasă poate preveni până la 40% din toate tipurile de cancer. [ 3 ] PCa este al doilea cel mai răspândit cancer la bărbați; impune o povară financiară copleșitoare asupra sistemelor medicale. Prin urmare, este justificat să depunem toate eforturile pentru a preveni dezvoltarea acesteia și a opri progresul acesteia. [ 4] Perioada lungă de latență dintre dovezile inițiale ale PCa și dezvoltarea bolii evidente ne oferă posibilitatea de a afecta evoluția bolii prin intervenții dietetice și nutriționale. În această revizuire, intenționăm să prezentăm intervențiile dietetice și nutriționale care au fost implementate cu scopul de a modifica riscul de dezvoltare și progresie a PCa.Mergi la:

RESTRICȚIA CALORIE ȘI PIERDEREA DE GREUTATE

Până în prezent, obezitatea a atins proporții epidemice în țările dezvoltate datorită disponibilității crescute a resurselor alimentare, pe lângă factorii ereditari, comportamentali și psihologici. Ca atare, numărul persoanelor supraponderale și obeze sa dublat la nivel mondial în ultimele două decenii. [ 5 ]

S-a constatat că obezitatea este asociată cu progresia și agresivitatea PCa. În plus, a fost corelată cu recurența biochimică crescută, rezultatul slab al tratamentelor nechirurgicale și cu o mortalitate mai mare specifică cancerului. [ 6 , 7 , 8 , 9 ] Prin urmare, pare rațional să presupunem că restricția calorică însoțită de pierderea în greutate poate reduce probabilitatea de formă agresivă de PCa. Restricția calorică încetinește progresia PCa la șoarecii TRAMP și prelungește supraviețuirea acesteia. [ 10 ] În plus, reducerea cu 30% a caloriilor la șoarecii transgenici Hi-Myc întârzie dezvoltarea PCa. [ 11]] Mai mult, s-a demonstrat că pierderea în greutate de peste 11 kilograme într-o perioadă de 10 ani a redus incidența PCa nemetastatică de stadiu final cu 45%. [ 12 ] Cu toate acestea, un regim de 6 luni cu conținut scăzut de carbohidrați la pacienții cu recurența biochimică nu a fost asociată cu îmbunătățirea timpului de dublare a PSA comparativ cu grupul de control. [ 13 ] Sunt necesare mai multe studii pentru a evalua efectele pierderii în greutate asupra progresiei PCa.Mergi la:

SUPLIMENTARE

Soia și produsele din soia

Studiile epidemiologice au sugerat că un consum mai mare de soia și produse din soia este asociat cu riscul redus de PCa. Studiul de sănătate adventist a arătat că participanții care au consumat lapte de soia de mai multe ori pe zi au avut un risc cu 70% mai mic de PCa (RR = 0,3). Concentrațiile mari de izoflavonoide din lichidul de prostată pot bloca proliferarea celulară și, de asemenea, scad subprodusele toxice ale oxidării prin activitatea sa antioxidantă. [ 14 ]

Genisteina este principala izoflavonă din produsele din soia. Efectul său asupra celulelor PCa a fost studiat pe scară largă. Un studiu efectuat pe animale a arătat că produsele dietetice din soia pot reduce creșterea carcinomului prostatic uman transplantabil la șoareci. [ 15 ] Deși există unele date în favoarea rolului preventiv al genisteinei, există o lipsă de dovezi legate de utilizarea sa ca agent de tratare în PCa. [ 16 ]

Un studiu randomizat controlat (ECA) a evaluat efectul unei combinații de vitamina E, seleniu și soia asupra progresiei de la neoplazia intraepitelială prostatică de înaltă calitate (HGPIN) la PCa. Raportul de pericol pentru această combinație pentru a preveni PCa a fost 1,03 (IC 95%, 0,67-1,60; P = 0,88). Prin urmare, autorii au crezut că acești agenți nu au nici un rol în prevenirea primară a PCa invazivă la bărbații cu HGPIN la biopsie. [ 17 ] Cu toate acestea, într-o revizuire sistematică și meta-analiză efectuată de Applegate și colab., A existat o semnificativă statistic asociere între consumul de soia și riscul scăzut de PCa. [ 18 ]

Licopen

Licopenul este un puternic antioxidant prezent în cea mai mare parte în roșii. Mai multe studii epidemiologice, experimentale și clinice din ultimul deceniu au raportat că consumul de roșii și produse din roșii este asociat cu un risc redus de PCa. Licopenul este responsabil pentru pigmentul roșu al roșiilor și al pepenelui. Există în țesuturile prostatei în cantități mari. [ 19 ] Un studiu de cohortă mare a raportat că consumul de două până la patru porții de roșii crude săptămânal este asociat cu o reducere cu 26% a riscului de PCa. Riscul este redus și mai mult (35%) prin creșterea numărului de porții la peste 10. Alte studii au raportat, de asemenea, o asociere inversă între nivelul seric de licopen și riscul de PCa la subiecții cu vârsta peste 65 de ani.20 ]

Într-un studiu, pacienții cu PCa au consumat paste pe bază de sos de roșii timp de 21 de zile înainte de prostatectomia radicală. Consumul de licopen a scăzut semnificativ nivelul antigenului prostatic specific (PSA) și leziunile ADN-ului oxidativ al leucocitelor.21 ] De asemenea, s-a demonstrat o scădere a riscului de PCa într-o meta-analiză mare (risc relativ [RR] = 0,78, interval de încredere 95% [ CI]: 0,66-0,92).22 ] S-a postulat că licopenul își poate exercita efectele de protecție prin salvarea 2-deoxi-guanozinei din speciile reactive de oxigen, scăderea proliferării celulare induse de factorul de creștere asemănător insulinei [ 23 , 24 , 25 ] și scăderea fosforilării carcinogene a genelor supresoare tumorale precum p53. [ 26] Mai mult, s-a observat că licopenul poate regla în jos metabolismul și semnalizarea androgenilor în PCa. [ 27 ]

Minerale

Seleniul joacă teoretic un rol în axa hipofizară-suprarenală-gonadală și un studiu clinic a arătat că poate exercita un efect protector împotriva dezvoltării PCa.28 ] Mai mult, un alt RCT a arătat că aportul de 200 μg de drojdie selenizată a fost asociat cu 49 Reducere% a riscului de PCa, în special la nivelurile inițiale scăzute de seleniu seric și vârsta mai mică de 65 de ani cu un PSA <4 ng / ml.29] Cu toate acestea, efectele protectoare ale seleniului au fost contravenite de viitoarele studii. Conform studiului Selenium and Vitamin E Cancer Prevention Trial (SELECT), nici seleniul sau vitamina E singure, nici combinația lor nu au scăzut riscul de PCa. De fapt, suplimentarea cu seleniu a fost asociată cu o creștere a riscului de PCa. Pe baza acestui studiu bine realizat, autorii au recomandat împotriva utilizării acestor suplimente ca agenți preventivi. [ 30 , 31 ] Mai târziu, o analiză de randomizare mendeliană a confirmat constatările SELECT și a arătat că nu numai seleniul nu a avut niciun efect asupra prevenirii PCa, ci a fost asociat și cu PCa avansat.32 ]

S-a raportat că zincul cu caracteristicile sale antioxidante este prezent în cantități mari în țesutul prostatei; studiile in vitro au arătat că inhibă creșterea celulelor PCa. [ 33 , 34 ] Într-un studiu, zincul din dietă nu s-a dovedit a fi asociat cu o scădere a riscului de PCa în general. Cu toate acestea, riscul de PCa avansat s-a redus cu un aport mai mare de zinc suplimentar. [ 35 ] O analiză cuprinzătoare susține că suplimentarea cu zinc este o abordare credibilă pentru prevenirea dezvoltării PCa. [ 36 ]

Rodie

Extractul de rodie s-a dovedit a fi capabil să inhibe creșterea celulelor PCa și să inducă apoptoza celulelor PCa umane agresive. [ 37 ] Un studiu experimental asupra liniilor de celule PCa metastatice umane a relevat că sucurile de rodie și extractele de coajă exercită efecte anticanceroase împotriva celulelor PCa. prin ținta mecanicistă a cascadei de semnalizare rapamicină. [ 38 ] Într-un RCT/ ECA de fază II a bărbaților cu PSA în creștere după prostatectomie radicală sau radioterapie, consumul zilnic de suc de rodie timp de câteva luni a dus la prelungirea timpului de dublare a PSA, ceea ce implică faptul că acest supliment poate încetini progresia PCa. [ 39 , 40 ] Astfel, acest agent ar putea fi utilizat la pacienții cu PCa cu scopul de a îmbunătăți rezultatele tratamentului și, sperăm, de supraviețuire.

Ceai verde și ceai negru

S-a raportat că antioxidantul polifenolic al ceaiului poate preveni formarea cancerului în celulele prostatei. [ 41 ] Într-un studiu, 20 de bărbați care erau programați pentru prostatectomie radicală au fost repartizați aleatoriu în trei grupe de ceai verde, ceai negru și cofeină. sifon (ca grup de control). Pacienții au consumat aceste băuturi zilnic timp de 5 zile înainte de operație. Ceaiul verde și ceaiul negru au dus la o concentrație mai mare de polifenoli în țesutul prostatei în comparație cu sifonul. Interesant este că proliferarea celulelor PCa ar putea fi blocată prin adăugarea serului pacienților care au luat ceai verde sau negru pe mediu. În plus, studiul a verificat biodisponibilitatea (tea/ceai)flavinelor în țesutul prostatei; unde își pot exercita efectele preventive. [ 42 ]

Mai multe studii experimentale și epidemiologice s-au concentrat asupra posibilului rol al catechinelor și altor polifenoli ai ceaiului împotriva PCa la om. [ 43 ] Într-un studiu, autorii au observat că consumul de ceai verde a fost asociat cu o scădere dependentă de doză a riscului de PCa (RR = 0,52, 95% CI 0,28-0,96). [ 44 ] Într-un RCT, 60 de voluntari cu PIN de înaltă calitate au fost randomizați pentru a primi catehine de ceai verde sau placebo și au urmat două biopsii de saturație în decurs de un an. Suplimentarea cu cateine ​​de ceai verde a fost asociată cu o reducere de aproape 80% a diagnosticului de PCa, de la 53% la 11%.45] Recent, o meta-analiză a arătat că consumul de ceai verde de peste 7 căni pe zi poate reduce riscul de PCa. În plus, catekinele de ceai verde s-au dovedit a fi eficiente în prevenirea PCa (RR = 0,38, P = 0,02). [ 46 ]

Vitamina E

Constatările cu privire la posibilul rol preventiv al suplimentării cu vitamina E sunt contradictorii. [ 47 ] În timp ce unele studii susțin rolul benefic al vitaminei E ca agent preventiv, [ 32 , 48 ] alții resping această noțiune sau sunt neconcludente. Raportul timpuriu al SELECT a arătat că vitamina E nu a avut niciun efect asupra dezvoltării PCa. [ 49 ] Cu toate acestea, cu o urmărire mai îndelungată, studiul a arătat că suplimentarea dietetică a vitaminei E a crescut semnificativ riscul de PCa la bărbații sănătoși. [ 31 ]

Mai multe studii au susținut că efectul suplimentării cu vitamina E asupra riscului de PCa ar putea fi variat pe baza istoricului de fumat al pacienților. Ca atare, studiul SELECT a arătat că vitamina E poate ajuta la prevenirea PCa la fumători, spre deosebire de nefumători; posibil datorită condițiilor ridicate de stres oxidativ la fumători. De fapt, la nefumători, excesul de vitamina E ar putea spori riscul de PCa. [ 31 ] De asemenea, studiul de prostată, plămân, colorectal și ovarian (PLCO) a arătat o scădere semnificativă a agresivității PCa în rândul fumătorilor după suplimentarea cu vitamina E (doze mai mari de 400 UI / zi a dus la o reducere de 71% a riscului de PCa avansat). [ 50 ] În general, suplimentarea cu vitamina E poate exercita un efect protector împotriva PCa numai în grupurile cu risc ridicat, cum ar fi fumătorii.

Vitamina C

Studiile la animale au arătat că Vitamina C singură sau în combinație cu Vitamina E inhibă creșterea celulelor PCa. [ 51 ] Un studiu a susținut că aporturile mai mari de fructe – inclusiv citrice bogate în Vitamina C – au fost asociate cu incidența mai mare a PCa (OR = 1,51 , IC 95% = 1,1-2,01 pentru quartila a 4- a ). [ 52 ] Această constatare pare să contrazică ipoteza efectelor protectoare ale vitaminei C. Mai mult, un RCT a arătat că un aport zilnic de 400 UI Vitamina E și 500 mg de vitamina C nu a fost asociată cu o scădere a riscului de PCa. [ 53 ] Vitamina C în doze mai mari decât nivelurile dietetice recomandate ar putea avea efecte terapeutice în unele tipuri de cancer. [ 54]] Un studiu a arătat că administrarea de doză mare de vitamina C INTRAVENOASA a dus la reducerea PSA la 75% dintre pacienții cu cancer de prostată. [ 55 ] Cu toate acestea, această constatare nu a fost reprodusă într-un alt studiu. [ 56 ]

Vitamina A și β-caroten

Beta-carotenul este un precursor al vitaminei A și este responsabil pentru pigmentul portocaliu din plante și legume. Într-un studiu de caz-control, aportul mai mare de caroten și beta-caroten a fost asociat cu o scădere a riscului de PCa (OR = 0,70 și respectiv 0,72). [ 57 ] Un studiu de caz-control imbricat în studiul PLCO a arătat că concentrațiile mai mari ale retinolului seric au fost asociate cu o reducere de 42% a riscului de PCa agresiv (GS> 7). [ 58 ] În contrast, în studiul de eficiență a carotenului și retinolului, riscul de PCa nu a diferit prin administrarea unei doze zilnice de β-caroten ( 30 mg) și palmitat de retinil (25.000 UI). Cu toate acestea, atunci când alte suplimente alimentare au însoțit această combinație, riscul de PCa agresivă a crescut (RR = 1,52). [ 59] Cu toate acestea, un studiu recent a arătat că aportul zilnic de morcov (> 3,2 g / zi) ar putea fi asociat cu un risc scăzut de PCa (SAU: 0,35, CI: 0,21-0,58). [ 60 ]

Vitamina D

S-a constatat că semnalizarea receptorilor de vitamina D joacă un rol în dezvoltarea și prognosticul PCas. [ 61 ] Mai mult, s-a raportat că Calcitriolul este capabil să inhibe proliferarea liniilor celulare PCa. [ 62 ] Un studiu realizat de John și colab. . a arătat că expunerea la razele solare rezidențiale este asociată cu un risc mai mic de PCa; rezultatul care indică indirect efectul protector al vitaminei D asupra PCa.63 ] De asemenea, s-a demonstrat că un nivel in circulație mai mare de 25 (OH) D este asociată cu o reducere de 57% a riscului de PCa letal. [ 64 ] S-a propus că proteina care leagă vitamina D poate modula asocierea dintre nivelurile serice de vitamina D și riscul de PCa avansată și letală. [ 65 ]

Cu toate acestea, unele studii au pus în discuție acest efect, deoarece nivelurile serice mai ridicate de vitamina D nu au fost asociate cu un risc scăzut de PCa. De fapt, ar putea fi asociat cu un risc mai mare de PCa agresiv. [ 66 , 67 ]

Resveratrol

Resveratrolul cunoscut sub numele de agent chimiopreventiv superior al cancerului este un stilbenoid cu potențiale proprietăți antioxidante care se găsește în cantități mari în pielea strugurilor. [ 68 ] Rezultatele studiilor preclinice la animale și linii celulare au condus la ipoteza că acest agent poate exercita un efect preventiv asupra cancerelor, inclusiv PCa. [ 69 ] Într-un studiu recent, cercetătorii au evaluat efectul sinergic al resveratrolului și al cisplatinei asupra viabilității și apoptozei celulelor PCa. S-a demonstrat că resveratrolul promovează apoptoza în celulele PCa și sensibilizează aceste celule la cisplatină. [ 70 ] Astfel, în ciuda deficitului de date clinice, pare util să considerăm resveratrolul ca un potențial agent preventiv al cancerului în viitoarele studii clinice.

Indoli și izotiocianați

Indolii se găsesc în legumele Brassica, cum ar fi varza, broccoli și varza de Bruxelles. Un studiu in vitro a arătat că Indol-3-carbinolul are efecte anti-proliferative asupra celulelor PCa. Astfel, merită să fie considerat un potențial agent chimioterapeutic și justifică un studiu suplimentar. [ 71 ] Un studiu a arătat că un consum mai mare de legume crucifere – ca sursă principală de izotiocianați – este asociat cu un risc redus de PCa. [ 72 ] Cu toate acestea, această asociere nu a fost replicată printr-un alt studiu [ 73 ]

CONCLUZIE

Cursul relativ indolent al PCa ne oferă posibilitatea de a interveni cu intenția de a preveni boala utilizând o varietate de modificări nutriționale și de stil de viață. Până în prezent, au fost studiate multe intervenții dietetice și nutriționale, cum ar fi restricția de calorii și consumul de suplimente. S-a demonstrat că restricția calorică este asociată cu probabilitatea scăzută de PCa agresivă. Suplimentele precum rodia pot îmbunătăți rezultatele tratamentului cu PCa. În plus, produsele antioxidante găsite în ceaiul verde și negru par să scadă riscul de PCa avansat Mai mult, genisteina din produsele din soia și licopenul din roșii sunt asociate cu un risc scăzut de PCa. Cu toate acestea, nu s-a dovedit că mineralele precum zincul și seleniul au un efect preventiv asupra PCa. În ceea ce privește vitaminele,datele legate de rolul preventiv al vitaminei A și vitaminei C sunt inconsistente, iar rezultatele sunt destul de controversate. Cu toate acestea, vitamina E are un efect pozitiv despre prevenirea PCa în grupurile cu risc ridicat, în special fumătorii. Mai mult, se pare că deficiența de vitamina D este asociată cu un risc crescut de PCa. Cu toate acestea, se observă un fenotip mai agresiv al bolii cu niveluri serice mai ridicate ale acestei vitamine. Pe scurt, nu există dovezi concludente cu privire la efectul pozitiv al intervențiilor nutriționale asupra dezvoltării și progresiei PCa. Cu toate acestea, majoritatea acestor instrucțiuni și protocoale ar putea fi urmate de pacienți cu intenția de a trăi un stil de viață sănătos.

Sprijin financiar și sponsorizare

Zero.

Conflicte de interes

Nu există conflicte de interese.Mergi la:

REFERINȚE

1. Kaiser A, Haskins C, Siddiqui MM, Hussain A, D’Adamo C. Rolul evoluției dietei în riscul și progresia cancerului de prostată. Curr Opin Oncol. 2019; 31 : 222-9. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]2. Matsushita M, Fujita K, Nonomura N. Influența dietei și nutriției asupra cancerului de prostată. Int J Mol Sci. 2020; 21 : 1447. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]3. Sharifi L. Nutriție și imunitate. În: Mahmoudi M, Rezaei N, editori. Nutriție și Rac. Cham: Springer; 2019. [ Google Scholar ]4. Zhai Z, Zheng Y, Li N, Deng Y, Zhou L, Tian T și colab. Incidența și sarcina bolii a cancerului de prostată din 1990 până în 2017: Rezultate din studiul sarcinii globale a bolii. Cancer. 2020; 126 : 1969–78. [ PubMed ] [ Google Scholar ]5. Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalența obezității la adulți și tineri: Statele Unite. Raport de date NCHS. 2015; 219 : 1–8. [ PubMed ] [ Google Scholar ]6. Wright ME, Chang SC, Schatzkin A, Albanes D, Kipnis V, Mouw T și colab. Studiu prospectiv al adipozității și modificării greutății în raport cu incidența și mortalitatea cancerului de prostată. Cancer. 2007; 109 : 675-84. [ PubMed ] [ Google Scholar ]7. Zhong S, Yan X, Wu Y, Zhang X, Chen L, Tang J și colab. Indicele masei corporale și mortalitatea la pacienții cu cancer de prostată: o meta-analiză doză-răspuns. Cancer de prostată Dis prostatic. 2016; 19 : 122–31. [ PubMed ] [ Google Scholar ]8. Xie B, Zhang G, Wang X, Xu X. Indicele de masă corporală și incidența cancerului de prostată non-agresiv și agresiv: o meta-analiză doză-răspuns a studiilor de cohortă. Oncotarget. 2017; 8 : 97584-92. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]9. Hu MB, Liu SH, Jiang HW, Bai PD, Ding Q. Obezitatea afectează detectarea mediată de biopsie a cancerului de prostată, în special a cancerului de prostată de grad înalt: o meta-analiză doză-răspuns a 29.464 de pacienți. Plus unu. 2014; 9 : e106677. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]10. Bonorden MJ, Rogozina OP, Kluczny CM, Grossmann ME, Grambsch PL, Grande JP, și colab. Restricția intermitentă a caloriilor întârzie detectarea tumorilor de prostată și crește timpul de supraviețuire la șoarecii TRAMP. Cancerul Nutr. 2009; 61 : 265-75. [ PubMed ] [ Google Scholar ]11. Blando J, Moore T, Hursting S, Jiang G, Saha A, Beltran L, și colab. Bilanțul energetic alimentar modulează progresia cancerului de prostată la șoarecii Hi-Myc. Cancer Prev Res (Phila) 2011; 4 : 2002–14. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]12. Rodriguez C, Freedland SJ, Deka A, Jacobs EJ, McCullough ML, Patel AV, și colab. Indicele masei corporale, schimbarea greutății și riscul de cancer de prostată în studiul de prevenire a cancerului II cohorta nutrițională. Biomarkeri de epidemiol pentru cancer Prev. 2007; 16 : 63-9. [ PubMed ] [ Google Scholar ]13. Freedland SJ, Allen J, Jarman A, Oyekunle T, Armstrong AJ, Moul JW și colab. Un studiu controlat randomizat al unei intervenții de 6 luni cu conținut scăzut de carbohidrați asupra progresiei bolii la bărbații cu cancer de prostată recurent: carbohidrați și studiu de prostată 2 (CAPS2) Clin Cancer Res. 2020; 26 : 3035–43. [ PubMed ] [ Google Scholar ]14. Hedlund TE, Maroni PD, Ferucci PG, Dayton R, Barnes S, Jones K, și colab. Obiceiurile alimentare pe termen lung afectează metabolismul izoflavonei din soia și acumularea în lichidul prostatic la bărbații caucazieni. J Nutr. 2005; 135 : 1400–6. [ PubMed ] [ Google Scholar ]15. Zhou JR, Gugger ET, Tanaka T, Guo Y, Blackburn GL, Clinton SK. Fitochimicalele din soia inhibă creșterea carcinomului prostatic uman transplantabil și a angiogenezei tumorale la șoareci. J Nutr. 1999; 129 : 1628–35. [ PubMed ] [ Google Scholar ]16. Perabo FG, Von Löw EC, Ellinger J, von Rücker A, Müller SC, Bastian PJ. Genisteina izoflavonei din soia în prevenirea și tratamentul cancerului de prostată. Cancer de prostată Dis prostatic. 2008; 11 : 6-12. [ PubMed ] [ Google Scholar ]17. Fleshner NE, Kapusta L, Donnelly B, Tanguay S, Chin J, Hersey K și colab. Progresia de la neoplazia intraepitelială prostatică de înaltă calitate la cancer: un studiu randomizat al combinației de vitamina E, soia și seleniu. J Clin Oncol. 2011; 29 : 2386-90. [ PubMed ] [ Google Scholar ]18. Applegate CC, Rowles JL, Ranard KM, Jeon S, Erdman JW. Consumul de soia și riscul de cancer de prostată: o revizuire sistematică actualizată și meta-analiză. Nutrienți. 2018; 10 : 40. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]19. Giovannucci E. O revizuire a studiilor epidemiologice asupra roșiilor, licopenului și cancerului de prostată. Exp Biol Med (Maywood) 2002; 227 : 852-9. [ PubMed ] [ Google Scholar ]20. Campbell JK, Canene-Adams K, Lindshield BL, Boileau TW, Clinton SK, Erdman JW., Jr. J Nutr. 2004; 134 : 3486S – 92S. [ PubMed ] [ Google Scholar ]21. Canene-Adams K, Campbell JK, Zaripheh S, Jeffery EH, Erdman JW., Jr Roșia ca aliment funcțional. J Nutr. 2005; 135 : 1226–30. [ PubMed ] [ Google Scholar ]22. Etminan M, Takkouche B, Caamaño-Isorna F. Rolul produselor din tomate și licopen în prevenirea cancerului de prostată: o meta-analiză a studiilor observaționale. Biomarkeri de epidemiol pentru cancer Prev. 2004; 13 : 340–5. [ PubMed ] [ Google Scholar ]23. Karas M, Amir H, Fishman D, Danilenko M, Segal S, Nahum A, și colab. Licopenul interferează cu progresia ciclului celular și semnalizarea factorului de creștere asemănător insulinei în celulele canceroase mamare. Cancerul Nutr. 2000; 36 : 101–11. [ PubMed ] [ Google Scholar ]24. Soares ND, Elias MB, Lima Machado C, Trindade BB, Borojevic R, Teodoro AJ. Analiza comparativă a conținutului de licopen din diferite produse alimentare pe bază de roșii asupra activității celulare a liniilor celulare de cancer de prostată. Alimente. 2019; 8 : 201. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]25. Tjahjodjati, Sugandi S, Umbas R, Satari M. Efectul protector al licopenului asupra eficacității inhibitoare a creșterii prostatei prin scăderea factorului de creștere a insulinei-1 în celulele indoneziene cu cancer de prostată uman. Res Rep Urol. 2020; 12 : 137–43. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]26. Johary A, Jain V, Misra S. Rolul licopenului în prevenirea cancerului. Int J Nutr Pharmacol Neurol Dis. 2012; 2 : 167. [ Google Scholar ]27. Applegate CC, Rowles JL, 3rd, Erdman JW., Jr. Poate licopenul să aibă impact pe axa androgenului în cancerul de prostată .: O analiză sistematică a culturii celulare și a studiilor pe animale? Nutrienți. 2019; 11 : 633. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]28. Clark LC, Dalkin B, Krongrad A, Combs GF, Jr, Turnbull BW, Slate EH și colab. Scăderea incidenței cancerului de prostată cu supliment de seleniu: Rezultatele unui studiu dublu-orb de prevenire a cancerului. Fr J Urol. 1998; 81 : 730–4. [ PubMed ] [ Google Scholar ]29. Duffield-Lillico AJ, Dalkin BL, Reid ME, Turnbull BW, Slate EH, Jacobs ET și colab. Suplimentarea cu seleniu, starea inițială de seleniu plasmatic și incidența cancerului de prostată: o analiză a perioadei complete de tratament a procesului de prevenire nutrițională a cancerului. BJU Int. 2003; 91 : 608-12. [ PubMed ] [ Google Scholar ]30. Klein EA, Thompson IM, Lippman SM, Goodman PJ, Albanes D, Taylor PR, și colab. SELECTAȚI: Următorul studiu de prevenire a cancerului de prostată. Proces de prevenire a cancerului de seleniu și vitamina E. J Urol. 2001; 166 : 1311–5. [ PubMed ] [ Google Scholar ]31. Klein EA, Thompson IM, Jr, Tangen CM, Crowley JJ, Lucia MS, Goodman PJ, și colab. Vitamina E și riscul de cancer de prostată: Studiul de prevenire a cancerului cu seleniu și vitamina E (SELECT) JAMA. 2011; 306 : 1549–56. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]32. Kristal AR, Stanford JL, Cohen JH, Wicklund K, Patterson RE. Utilizarea suplimentelor de vitamine și minerale este asociată cu un risc redus de cancer de prostată. Biomarkeri de epidemiol pentru cancer Prev. 1999; 8 : 887-92. [ PubMed ] [ Google Scholar ]33. Powell SR. Proprietățile antioxidante ale zincului. J Nutr. 2000; 130 : 1447S – 54S. [ PubMed ] [ Google Scholar ]34. Liang JY, Liu YY, Zou J, Franklin RB, Costello LC, Feng P. Efect inhibitor al zincului asupra creșterii celulelor carcinomului prostatic uman. Prostata. 1999; 40 : 200–7. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]35. Gonzalez A, Peters U, Lampe JW, White E. Aport de zinc din suplimente și dietă și cancer de prostată. Cancerul Nutr. 2009; 61 : 206-15. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]36. Costello LC, Franklin RB. O revizuire cuprinzătoare a rolului zincului în funcția și metabolismul normal al prostatei; Și implicațiile sale în cancerul de prostată. Arch Biochem Biophys. 2016; 611 : 100-12. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]37. Malik A, Mukhtar H. Prevenirea cancerului de prostată prin rodie. Ciclul celulei. 2006; 5 : 371–3. [ PubMed ] [ Google Scholar ]38. Chaves FM, Pavan IC, da Silva LG, de Freitas LB, Rostagno MA, Antunes AE, și colab. Sucurile de rodie și extractele de coajă sunt capabile să inhibe proliferarea, migrația și formarea de colonii ale liniilor celulare de cancer de prostată și modulează calea de semnalizare Akt / mTOR / S6K. Alimente vegetale Hum Nutr. 2020; 75 : 54–62. [ PubMed ] [ Google Scholar ]39. Pantuck AJ, Leppert JT, Zomorodian N, Aronson W, Hong J, Barnard RJ și colab. Studiu de faza II a sucului de rodie pentru bărbații cu antigen specific de prostată în creștere în urma intervenției chirurgicale sau a radiațiilor pentru cancerul de prostată. Clin Cancer Res. 2006; 12 : 4018–26. [ PubMed ] [ Google Scholar ]40. Jarrard DF, Filon M, Huang W, Kim K, Havighurst T, Konety BR, și colab. Un studiu randomizat de fază IIa controlat placebo cu extract de rodie / POMx la subiecți cu cancer de prostată clinic localizat supus supravegherii active. Sunt Soc Clin Oncol. 2020; 38 (6 supliment): 285. [ Google Scholar ]41. Miyata Y, Shida Y, Hakariya T, Sakai H. Efectele anti-cancer ale polifenolilor de ceai verde împotriva cancerului de prostată. Molecule. 2019; 24 : 193. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]42. Henning SM, Aronson W, Niu Y, Conde F, Lee NH, Seeram NP și colab. Ceaiul polifenoli și theaflavins sunt prezenți în țesutul prostatic al oamenilor și șoarecilor după consumul de ceai verde și negru. J Nutr. 2006; 136 : 1839–43. [ PubMed ] [ Google Scholar ]43. Siddiqui IA, Adhami VM, Saleem M, Mukhtar H. Efectele benefice ale ceaiului și polifenolilor acestuia împotriva cancerului de prostată. Mol Nutr Food Res. 2006; 50 : 130–43. [ PubMed ] [ Google Scholar ]44. Kurahashi N, Sasazuki S, Iwasaki M, Inoue M, Tsugane S JPHC Study Group. Consumul de ceai verde și riscul de cancer de prostată la bărbații japonezi: un studiu prospectiv. Sunt J Epidemiol. 2008; 167 : 71-7. [ PubMed ] [ Google Scholar ]45. Brausi M, Rizzi F, Bettuzzi S. Chimioprevenția cancerului de prostată uman prin catechine de ceai verde: Doi ani mai târziu. O actualizare de urmărire. Eur Urol. 2008; 54 : 472–3. [ PubMed ] [ Google Scholar ]46. Guo Y, Zhi F, Chen P, Zhao K, Xiang H, Mao Q și colab. Ceaiul verde și riscul de cancer de prostată: o analiză sistematică și meta-analiză. Medicină (Baltimore) 2017; 96 : e6426. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]47. Abraham A, Kattoor AJ, Saldeen T, Mehta JL. Vitamina E și efectele sale anticanceroase. Crit Rev Food Sci Nutr. 2019; 59 : 2831–8. [ PubMed ] [ Google Scholar ]48. Heinonen OP, Koss L, Albanes D, Taylor PR, Hartman AM, Edwards BK și colab. Cancerul de prostată și suplimentarea cu α-tocoferol și β-caroten: Incidența și mortalitatea într-un studiu controlat. J Inst. Națională pentru cancer 1998; 90 : 440-6. [ PubMed ] [ Google Scholar ]49. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG și colab. Efectul seleniului și vitaminei E asupra riscului de cancer de prostată și a altor tipuri de cancer: Studiul de prevenire a cancerului cu seleniu și vitamina E (SELECT) JAMA. 2009; 301 : 39-51. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]50. Gohagan JK, Prorok PC, Hayes RB, Kramer BS. Procesul de screening al cancerului de prostată, plămân, colorectal și ovarian (PLCO) al institutului național de cancer: istorie, organizare și statut. Studii clinice de control. 2000; 21 : 251S – 72S. [ PubMed ] [ Google Scholar ]51. Taper HS, Jamison JM, Gilloteaux J, Gwin CA, Gordon T, Summers JL. Reactivarea in vivo a DNazelor în tumorile de prostată umane implantate după administrarea unei combinații de vitamina C / K3. J Histochem Cytochem. 2001; 49 : 109–19. [ PubMed ] [ Google Scholar ]52. Jain MG, Hislop GT, Howe GR, Ghadirian P. Alimente vegetale, antioxidanți și risc de cancer de prostată: Constatări din studii de caz-control din Canada. Cancerul Nutr. 1999; 34 : 173–84. [ PubMed ] [ Google Scholar ]53. Gunawardena K, Campbell LD, Meikle AW. Terapia combinată cu vitaminele C plus E inhibă supraviețuirea și creșterea celulelor cancerului de prostată uman. Prostata. 2004; 59 : 319-27. [ PubMed ] [ Google Scholar ]54. van Gorkom GN, Lookermans EL, Van Elssen CH, Bos GM. Efectul vitaminei C (acid ascorbic) în tratamentul pacienților cu cancer: o revizuire sistematică. Nutrienți. 2019; 11 : 977. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]55. Mikirova N, Casciari J, Rogers A, Taylor P. Efectul dozei mari de vitamina C intravenoasă asupra inflamației la pacienții cu cancer. J Transl Med. 2012; 10 : 189. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]56. Nielsen TK, Højgaard M, Andersen JT, Jørgensen NR, Zerahn B, Kristensen B și colab. Infuzie săptămânală de acid ascorbic la pacienții cu cancer de prostată rezistent la castrare: un studiu de fază II cu un singur braț. Traducere Androl Urol. 2017; 6 : 517–28. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]57. Bosetti C, Talamini R, Montella M, Negri E, Conti E, Franceschi S, și colab. Retinol, carotenoizi și riscul de cancer de prostată: un studiu caz-control din Italia. Int J Rac. 2004; 112 : 689-92. [ PubMed ] [ Google Scholar ]58. Schenk JM, Riboli E, Chatterjee N, Leitzmann MF, Ahn J, Albanes D, și colab. Retinolul seric și riscul de cancer de prostată: un studiu de caz-control imbricat în studiul de screening al cancerului de prostată, plămân, colorectal și ovarian. Biomarkeri de epidemiol pentru cancer Prev. 2009; 18 : 1227–31. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]59. Neuhouser ML, Barnett MJ, Kristal AR, Ambrosone CB, King IB, Thornquist M, și colab. Utilizarea suplimentelor alimentare și riscul de cancer de prostată în studiul cu caroten și retinol. Biomarkeri de epidemiol pentru cancer Prev. 2009; 18 : 2202–6. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]60. Van Hoang D, Pham NM, Lee AH, Tran DN, Binns CW. Aporturile de carotenoide dietetice și riscul de cancer de prostată: un studiu caz-control din Vietnam. Nutrienți. 2018; 10 : 70. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]61. Trump DL, Aragon-Ching JB. Vitamina D în cancerul de prostată. Asian J Androl. 2018; 20 : 244–52. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]62. LaMonica C, Weigel N. Vitamina D și cancerul de prostată. Exp Biol Med. 2004; 229 : 277–84. [ PubMed ] [ Google Scholar ]63. John EM, Dreon DM, Koo J, Schwartz GG. Expunerea rezidențială la lumina soarelui este asociată cu un risc scăzut de cancer de prostată. J Steroid Biochem Mol Biol. 2004; 89-90 : 549-52. [ PubMed ] [ Google Scholar ]64. Shui IM, Mucci LA, Kraft P, Tamimi RM, Lindstrom S, Penney KL și colab. Variația genetică legată de vitamina D, Vitamina D plasmatică și riscul de cancer letal de prostată: un studiu prospectiv de caz-control imbricat. J Natl Cancer Inst. 2012; 104 : 690-9. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]65. Yuan C, Shui IM, Wilson KM, Stampfer MJ, Mucci LA, Giovannucci EL. Circula 25-hidroxivitamina D, proteina care leagă vitamina D și riscul de cancer de prostată avansat și letal. Int J Rac. 2019; 144 : 2401-7. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]66. Travis RC, Crowe FL, Allen NE, Appleby PN, Roddam AW, Tjønneland A și colab. Vitamina D serică și riscul de cancer de prostată într-o analiză de caz-control cuibărită în cadrul anchetei prospective europene privind cancerul și nutriția (EPIC) Am J Epidemiol. 2009; 169 : 1223–32. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]67. Ahn J, Peters U, Albanes D, Purdue MP, Abnet CC, Chatterjee N, și colab. Concentrația serică a vitaminei D și riscul de cancer de prostată: un studiu de caz-control imbricat. J Natl Cancer Inst. 2008; 100 : 796-804. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]68. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW și colab. Activitatea chimiopreventivă a cancerului a resveratrolului, un produs natural derivat din struguri. Ştiinţă. 1997; 275 : 218-20. [ PubMed ] [ Google Scholar ]69. Stewart JR, Artime MC, O’Brian CA. Resveratrol: O substanță nutrițională candidată pentru prevenirea cancerului de prostată. J Nutr. 2003; 133 : 2440S – 3S. [ PubMed ] [ Google Scholar ]70. Martínez-Martínez D, Soto A, Gil-Araujo B, Gallego B, Chiloeches A, Lasa M. Resveratrol promovează apoptoza prin inducerea fosfatazei 1 cu dublă specificitate și sensibilizează celulele canceroase de prostată la cisplatină. Alimente Chem Toxicol. 2019; 124 : 273-9. [ PubMed ] [ Google Scholar ]71. Zhang J, Hsu BA, Kinseth BA, Bjeldanes LF, Firestone GL. Indolul-3-carbinol induce o oprire a ciclului celular G1 și inhibă producția de antigen specific prostatei în celulele carcinomului de prostată LNCaP uman. Cancer. 2003; 98 : 2511-20. [ PubMed ] [ Google Scholar ]72. Cohen JH, Kristal AR, Stanford JL. Aportul de fructe și legume și riscul de cancer de prostată. J Natl Cancer Inst. 2000; 92 : 61–8. [ PubMed ] [ Google Scholar ]73. Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC. Un studiu prospectiv al legumelor crucifere și al cancerului de prostată. Biomarkeri de epidemiol pentru cancer Prev. 2003; 12 : 1403-9. [ PubMed ] [ Google Scholar ]


Articole din Jurnalul de Cercetări în Științe Medicale: Jurnalul Oficial al Universității de Științe Medicale din Isfahan sunt furnizate aici prin amabilitatea Wolters Kluwer – Medknow Publications

Asocierea dintre nivelurile serice de micronutrienți și severitatea bolii la pacienții cu COVID-19

Abstract

Obiective

Acest studiu a avut ca scop compararea nivelului seric al micronutrienților cu cantități normale și evaluarea asocierii acestora cu severitatea bolii și citokinele inflamatorii la pacienții cu boală coronavirus 2019 (COVID-19).

Metode

Prezentul studiu transversal a inclus 60 de pacienți internați la unitatea de terapie intensivă cu COVID-19. Am înregistrat date privind caracteristicile demografice, informațiile antropometrice și istoricul medical. Nivelurile serice de markeri inflamatori (viteza de sedimentare a eritrocitelor, proteina C reactivă, interferon-gamma, factor de necroză tumorală-alfa, interleukina-6), vitamine (A, B 9 , B 12, C, D, E) și minerale (magneziu, zinc, fier) ​​au fost măsurate. Un radiolog a evaluat severitatea afectării pulmonare în funcție de scanările tomografice computerizate ale pacientului. Gravitatea bolii a fost evaluată cu scorul Evaluare Fiziologică Acută și Evaluarea Sănătății Cronice (APACHE), saturația oxigenului și temperatura corpului. Au fost măsurate asociații independente între nivelurile serice de micronutrienți cu severitatea COVID-19.

Rezultate

Vârsta medie a pacientului a fost de 53,50 ani (interval interquartil, 12,75 ani). Cu excepția vitaminei A și a zincului, nivelurile serice ale altor micronutrienți au fost mai mici decât valorile normale minime. Pacienții cu scor APACHE ≥25 au avut un indice de masă corporală mai mare ( P  = 0,044), temperatura corpului ( P  = 0,003), rata de sedimentare a eritrocitelor ( P  = 0,008), proteină C reactivă ( P  = 0,003) și o saturație mai mică de oxigen ( P  = 0,005), nivelurile serice de vitamina D ( P  = <0,001) și zinc ( P  = <0,001) comparativ cu pacienții cu scor APACHE <25. Am constatat că nivelurile serice mai scăzute de vitamina D, magneziu și zinc au fost asociate semnificativ și independent cu scoruri APACHE mai mari ( P = 0,001, 0,028 și, respectiv, 0,001) și implicare pulmonară mai mare ( P  = 0,002, 0,045 și, respectiv, 0,001).

Concluzii

Nivelurile serice mai scăzute de vitamina D, zinc și magneziu au fost implicate în COVID-19 sever.

Nutriție. 2021 noiembrie-decembrie; 91: 111400.Publicat online 2021 iunie 24. doi:  10.1016 / j.nut.2021.111400PMCID: PMC8223004PMID: 34388583

Asocierea dintre nivelurile serice de micronutrienți și severitatea bolii la pacienții cu COVID-19

Mohammad Taghi Beigmohammadi , Sama Bitarafan , MD, Ph.D., b, ⁎ Alireza Abdollahi , c, d Laya Amoozadeh , Faeze Salahshour , Maedeh Mahmoodi ali abadi , Danesh Soltani , b și Zoya Asl Motallebnejad b

Informații despre autor

1 departament de anestezie și terapie intensivă, complexul spitalicesc Imam Khomeini, Universitatea de Științe Medicale din Teheran, Teheran, Iranb Centrul iranian de cercetare neurologică, Institutul de Neuroștiințe, Complexul spitalicesc Imam Khomeini, Universitatea de Științe Medicale din Teheran, Teheran, Iranc Departamentul de Patologie, Școala de Medicină, Complexul spitalicesc Imam Khomeini, Universitatea de Științe Medicale din Teheran, Teheran, Irand Centrul de cercetare a bolilor mamare, Universitatea de Științe Medicale din Teheran, Teheran, Irane Centrul avansat de cercetare diagnostică și intervențională din Iran, Departamentul de Radiologie, Complexul spitalicesc Imam Khomeini, Universitatea de Științe Medicale din Teheran, Teheran, Iranf Departamentul de laborator, complexul spitalicesc Imam Khomeini, Universitatea de Științe Medicale din Teheran, Teheran, Iran Autor corespondent. Tel .: (+98 21) 6658 1558; fax: (+98 21) 6658 1558.

 Note despre articol Informații privind drepturile de autor și licență Renunțare

Introducere

Boala Coronavirus din 2019 (COVID-19) este un virus descoperit recent, cu o rată ridicată de transmitere și diverse manifestări clinice, de la contaminarea asimptomatică până la boala severă, care necesită internarea în unitatea de terapie intensivă (UCI) [1] . Severitatea COVID-19 poate fi legată nu numai de încărcătura virală, ci și de răspunsurile imune reglementate la pacienți. Replicarea rapidă a virusului datorită funcției necorespunzătoare și nereglementate a sistemului imunitar are ca rezultat un răspuns inflamator distructiv, caracterizat prin niveluri serice crescute de markeri inflamatori precum proteina C reactivă (CRP), interleukina (IL) -6, necroza tumorii factorul și rata de sedimentare a eritrocitelor (VSH) [2] , [3] , [4]. Datele disponibile până în prezent au arătat că răspunsurile nereglementate ale sistemului imunitar ar putea fi responsabile pentru eșecul multiorganic, care este principala cauză de deces la pacienții grav bolnavi [ 5 , 6 ].

S-a raportat că micronutrienții, inclusiv vitaminele și mineralele, joacă un rol vital în reglarea și integritatea sistemului imunitar [ 7 , 8 ]. Aspectele epigenetice ale mecanismelor care controlează răspunsurile sistemului imunitar și procesele inflamatorii, cum ar fi metilarea și modificarea ADN-ului și a proteinelor sale depind de stocarea suficientă a unor vitamine și minerale [7] , [8] , [9] . Astfel, nivelurile scăzute de micronutrienți pot influența severitatea bolilor infecțioase, cum ar fi COVID-19 [9] , [10] , [11]. Datorită ratei ridicate de mortalitate la pacienții cu boală critică cu COVID-19, una dintre provocările cu care se confruntă cercetătorii este identificarea mecanismelor implicate în virulență și severitatea bolii la pacienții cu COVID-19 [9] , [10] , [11] , [12] . Prin urmare, având în vedere rolul crucial al micronutrienților în reglarea răspunsurilor imune, acest studiu a evaluat nivelurile serice ale micronutrienților și relația lor cu severitatea COVID-19.Mergi la:

Metode

Proiectarea studiului, participanții, istoricul personal și examinarea fizică

Acest studiu transversal a inclus pacienți de vârstă mijlocie și vârstnici cu COVID-19 confirmat de reacția în lanț a polimerazei, care au fost internați la ICU din Spitalul Imam Khomeini (Teheran, Iran) în perioada martie – iunie 2020. Protocolul de studiu a fost elaborat în conformitate cu Declarația privind raportarea studiilor observaționale în epidemiologie [13], și a fost aprobat de comitetul de etică al Universității de Științe Medicale din Teheran. Pacienții care au fost supuși chimioterapiei în ultimii 3 luni, cei cu boli imunosupresate (de exemplu, virusul imunodeficienței umane) și cei care au luat suplimente de vitamine sau minerale în decurs de 3 luni înainte de înscriere, au fost excluși din studiu. Au fost colectate date privind caracteristicile demografice și bolile anterioare care stau la baza acestora. A fost efectuat un examen fizic pentru a măsura greutatea, înălțimea, semnele vitale și saturația de oxigen. S-a calculat indicele de masă corporală (IMC). Toți pacienții au fost informați cu privire la scopul și metoda studiului și s-a obținut consimțământul informat în scris.

Criteriile de includere au fost vârsta> 20 de ani, ambele sexe, diagnosticul definitiv al COVID-19 și acordul de a coopera în studiu. Criteriile de excludere au fost pacienții care au fost supuși chimioterapiei în ultimii 3 luni, cei cu boli imunosupresate (de exemplu, virusul imunodeficienței umane) și cei care au luat suplimente de vitamine sau minerale în decurs de 3 luni înainte de înscriere.

Măsurători de laborator

Toți pacienții incluși au furnizat probe de sânge din vena antecubitală pentru măsurarea de laborator la momentul internării. Numărul complet de celule sanguine și numărul diferențial au fost determinate prin intermediul unui contor automatizat de celule standardizat. CRP a fost măsurată utilizând metoda de testare imunosorbentă legată de enzime. VSH a fost măsurată utilizând un analizor automat al vitezei de sedimentare a eritrocitelor. Nivelurile serice de IL-6, factorul de necroză tumorală-alfa și interferon-gamma au fost măsurate folosind un test imunosorbent legat de enzime. Am măsurat concentrațiile sanguine ale vitaminelor A, B9, B 12, C, E și D prin cromatografie lichidă de înaltă performanță. Mineralele, inclusiv magneziul, zincul și fierul au fost măsurate folosind un spectrometru de masă cu plasmă cuplat.

Metode de evaluare a severității bolii

Un medic intensivist prin intermediul http://www.mdcalc.com a măsurat evaluarea acută a fiziologiei și a sănătății cronice (APACHE), care este un sistem de evaluare severitate utilizat în mod obișnuit, pentru pacienții la momentul internării. Un scor APACHE de ≥25 a fost considerat scorul mare pentru mortalitate [14] . O radiografie computerizată a tomografiei computerizate (CT) a fost efectuată și analizată de existența opacității sticlei măcinate sau a modelelor de consolidare de către un radiolog. Implicarea fiecărui lob a fost marcată după cum urmează: Fără implicare (scor 0), implicare 1% până la 25% (scor 1), implicare 26% până la 49% (scor 2), implicare 50% la 75% (scor 3) și Implicare de la 76% la 100% (scor 4).

Ulterior, scorurile lobare individuale au fost însumate pentru a obține scorul general de severitate a plămânilor la fiecare pacient. Severitatea afectării pulmonare la fiecare pacient a fost clasificată pe baza scorului general de severitate după cum urmează: Fără implicare (scor 0), implicare minimă (interval de scor, 1-5), implicare ușoară (interval de scor, 6-10), moderată implicare (interval de scor, 11-15), implicare severă (interval de scor, ≥16) [ 15 , 16 ].

analize statistice

Analizele datelor au fost efectuate cu software-ul IBM SPSS Statistics, versiunea 17. Normalitatea variabilelor a fost evaluată cu testul Kolmogorov – Smirnov. Rezultatele sunt prezentate ca medie (deviație standard [SD]) sau mediană (intervalul interquartilei [IQR]) pentru variabilele continue și frecvența (procentuală) pentru variabilele categorice. Datele continue cu distribuție normală au fost comparate folosind testul t independent , iar datele fără distribuție normală au fost comparate folosind testul U Mann – Whitney. Variabilele categorice au fost comparate folosind un test χ 2 .

Corelația dintre nivelul seric al micronutrienților și severitatea bolii a fost analizată în diferite modele. A fost efectuată o analiză de regresie liniară multivariată pentru a identifica o asociere independentă a nivelului seric al micronutrienților cu scorul APACHE și severitatea implicării CT. P <0,05 a fost luat în considerare pentru semnificația statistică.Mergi la:

Rezultate

Comparația datelor demografice, a caracteristicilor clinice și a markerilor inflamatori între două grupuri în funcție de scorul APACHE

tabelul 1rezumă datele demografice, caracteristicile clinice și markerii inflamatori ai pacienților grupați în funcție de scorul APACHE. În total, 60 de pacienți au fost înrolați și clasificați în două grupuri la momentul analizei: scor APACHE ≥25 (n = 20) și scor APACHE <25 (n = 40).

tabelul 1

Compararea caracteristicilor demografice și de bază între grupuri

VariabileTotalScor APACHE <25 (n = 40)Scorul APACHE ≥25 (n = 20)Valoarea P
Vârsta, y53,50 (12,75)50,00 (16,5)56,00 (8,50)0,141
Sex, n
Masculin3924150,390
Femeie21165
* Indicele de masă corporală, kg / m 225,90 (2,70)25,40 (2,58)26,89 (2,73)0,044
Temperatura, ° C37,53 (0,55)37,38 (0,46)37,82 (0,61)0,003
Ajutoare respiratorii, n
Mască cu rezervă161330,001
Mască simplă11101
Ajutor nazal550
CPAP541
Ventilație neinvazivă220
Ventilație invazivă21615
Boala subiacentă, n
Diabetul zaharat5500,057
Astm1257
Boli tiroidiene660
Malignitate19136
Diabet zaharat și hipertensiune arterială18117
Saturare cu oxigen
Cu ajutorul96,00 (2)96,00 (2,5)95,00 (2)0,005
Fără ajutor89,00 (4,75)90,00 (3)87,00 (3)<0,001
Număr WBC, × 109 / L6,95 (7,00)6,70 (7,98)7,05 (7,22)0,931
Număr de neutrofile, × 109 / L80,20 (11,40)80,65 (9,22)79,90 (22,90)0,456
Număr de limfocite, × 109 / L12.35 (11.00)12.40 (10.60)12,25 (15,88)0,925
Viteza de sedimentare a eritrocitelor, mm / oră63,50 (46)54,00 (55,25)85,50 (50)0,008
* Proteină C reactivă, mg / L87,50 (115,25)82,50 (87,25)118,50 (124,75)0,003
Interleukină-6, pg / ml189,65 (191,85)177,70 (164,57)229,2 (233,97)0,272
Factor de necroză tumorală-alfa, pg / ml207,7 (211,67)207,6 (174,04)248,2 (292,10)0,410
Interferon-gamma, pg / ml118,15 (122,50)82,80 (108,00)141,7 (237,10)0,293
Scorul de implicare CT13.00 (9.00)9,50 (6,00)18 (3,00)<0,001
Gravitatea implicării CT, n
Fără implicare000<0,001
Minim990
Blând17170
Moderat271413
Severă707

Deschideți într-o fereastră separată

APACHE, Evaluarea fiziologică acută și evaluarea sănătății cronice; CPAP, presiune continuă pozitivă a căilor respiratorii; CT, tomografie computerizată; WBC, număr de celule albe din sânge

* Variabile distribuite în mod normal

Vârsta medie a pacienților a fost de 53,50 ani (IQR, 12,75 ani). Distribuția în funcție de vârstă și sex a fost comparabilă între grupurile de studiu. IMC și temperatura medii au fost semnificativ mai mari în grupul cu scor APACHE ≥25 comparativ cu celălalt grup ( P  = 0,044 și respectiv 0,003). Saturația oxigenului cu sau fără ajutorul respirator a fost semnificativ mai mică în grupul cu scor APACHE ≥25, comparativ cu celălalt grup ( P  = 0,005 și, respectiv, 0,001). Grupul cu scor APACHE ≥25 a utilizat ajutoare respiratorii mai invazive comparativ cu celălalt grup și invers ( P  = 0,001). Nu a existat nicio diferență semnificativă în frecvența bolilor subiacente anterioare între grupurile de studiu.

Dintre markerii inflamatori, nivelurile serice ale VSH și CRP au fost semnificativ mai mari în grupul cu scor APACHE ≥25 comparativ cu celălalt grup ( P  = 0,008 și respectiv 0,003). Alți markeri inflamatori, inclusiv IL-6, factor de necroză tumorală-alfa și interferon-gamma nu au prezentat diferențe semnificative între grupurile de studiu. În ceea ce privește afectarea CT pulmonară, grupul cu scor APACHE ≥25 a avut un scor de severitate mai mare și o rată mai mare de prevalență a implicării severe comparativ cu grupul cu scor APACHE <25 ( P <0,001).

Comparația nivelului seric al micronutrienților între două grupuri în funcție de scorul APACHE

masa 2rezumă datele privind nivelurile serice de vitamine și minerale dintre cele două grupuri. Nivelurile serice de vitamina D și zinc au fost semnificativ mai mici în grupul cu scor APACHE ≥25, comparativ cu grupul cu scor APACHE <25 ( P <0,001).

masa 2

Comparația nivelurilor serice de micronutrienți între grupuri

VariabileTotalAPACHE scor e <25Scorul APACHE ≥25Valoarea P
Vitamina A, mcmol / L0,25 (0,40)0,30 (0,37)0,20 (0,39)0,841
Vitamina B9, mcg / L8,20 (8,37)9,10 (8,87)6,05 (7,75)0,147
Vitamina B12, pg / ml374,3 (541,05)429,40 (564,3)260,75 (546,25)0,117
Vitamina C, mg / dL0,40 (0,60)0,40 (0,50)0,25 (0,27)0,063
Vitamina D, ng / ml28,95 (13,39)33,38 (13,26)20,08 (8,49)<0,001
Vitamina E, mcg / ml7,45 (6,65)7,75 (7,22)7.30 (6)0,406
Magneziu, mg / dL1,90 (0,40)2 (0,85)1,80 (0,10)0,060
Zinc, mcg / dL70,00 (44,5)80,00 (32,75)50,50 (18)<0,001
Fier, mcg / dL48,00 (36,75)52,00 (38,75)38,00 (27)0,249

APACHE, Evaluarea fiziologică acută și evaluarea cronică a sănătății

Asocierea micronutrienților cu scorul APACHE și severitatea implicării tomografiei computerizate

Tabelul 3ilustrează asocierea dintre nivelurile serice de micronutrienți și severitatea bolii în funcție de scorurile APACHE și de implicare pulmonară. În modelul multivariat, nivelurile serice de vitamina D, zinc și magneziu au avut o asociere independentă și inversă cu APACHE și scorurile de implicare pulmonară după ajustarea pentru confundanți.

Tabelul 3

Analiza de regresie liniară multivariată pentru a identifica asocierea independentă a nivelului seric al micronutrienților cu scorul APACHE și severitatea implicării CT

MicronutriențiScor APACHEScorul de severitate al implicării CT
Beta (IC 95%)Valoarea PBeta (IC 95%)Valoarea P
Vitamina A, mcmol / L3,673 (–1,553 până la 8,899)0,1641,742 (–2,025 până la 5,509)0,357
Vitamina B9, mcg / L0,150 (–0,072 până la 0,373)0,1810,073 (–0,088 până la 0,233)0,367
Vitamina B12, pg / ml0,004 (0,000-0,008)0,0560,002 (–0,004 până la 0,005)0,096
Vitamina C. mg / dL1,481 (–1,975-4,937)0,3940,933 (–1,535-3,401)0,451
Vitamina D, ng / ml–0.157 (–0.251 până la –0.063)0,001–0.111 (–0.178 până la –0.044)0,002
Vitamina E, mcg / ml0,004 (–0,040 până la 0,049)0,8490,012 (–0,237 până la 262)0,921
Mg, mg / dL–2.578 (–4.868 până la –0.287)0,028–1.688 (–3.334 până la –0.042)0,045
Zinc, mcg / dL–0.096 (–0.147 până la –0.045)<0,001–0.082 (–0.119 până la –0.046)<0,001
Fier, mcg / dL0,021 (–0,040 până la 0,083)0,4910,001 (–0,043 până la 0,045)0,971
Indicele de masă corporală, kg / m 20,123 (–0,264 până la 0,511)0,5260,072 (–0,212 până la 0,355)0,355

APACHE, Evaluarea fiziologică acută și evaluarea sănătății cronice; CI, interval de încredere; CT, tomografie computerizată

* Ajustat pentru indicele de masă corporală, temperatura, ajutoarele respiratorii, saturația oxigenului, rata de sedimentare a eritrocitelor, proteina C reactivă, vitamina D (cu excepția modelului de vitamina D), zinc (cu excepția modelului de zinc) și micronutrienți, inclusiv vitamina C, D , zinc, magneziu (numai pentru modelul cu indice de masă corporală)

Comparația nivelului seric al micronutrienților cu valorile minime de referință ale serului

Acest studiu a arătat că media sau mediana nivelurilor serice de micronutrienți a fost semnificativ mai mică decât nivelurile serice minime preconizate, cu excepția zincului și vitaminei A (Tabelul 4 ).

Tabelul 4

Compararea nivelurilor serice de micronutrienți cu nivelul minim al intervalului normal

VariabileTotalInterval normalP- valoare *
Vitamina A, mcmol / L0,25 (0,40)0,3–0,80,203
Vitamina B9, mcg / L8,20 (8,37)3-17<0,001
Vitamina B12, pg / ml374,3 (541,05)160–950<0,001
Vitamina C, mg / dL0,40 (0,60)0,6-20,003
Vitamina D, ng / ml28,95 (13,39)> 20<0,001 
Vitamina E, mcg / ml7,45 (6,65)5-18<0,001
Magneziu, mg / dL1,90 (0,40)1.7-2.2<0,001
Zinc, mcg / dL70,00 (44,5)70–1201,00
Fier, mcg / dL48,00 (36,75)60-70<0,003

 Test de semn Un eșantion t testMergi la:

Discuţie

Am evaluat și comparat nivelurile serice ale micronutrienților cu intervalul normal minim și am demonstrat că, cu excepția vitaminei A și a zincului, nivelurile serice ale altor micronutrienți au fost semnificativ mai mici decât în ​​mod normal la pacienții cu COVID-19 care au fost internați la UCI. Mai mult, am evaluat asocierea dintre acești micronutrienți și severitatea bolii, iar rezultatele noastre au arătat că nivelurile serice mai scăzute de vitamina D, zinc și magneziu au fost corelate semnificativ și invers cu un scor de severitate mai mare, independent de factorii de confuzie. O provocare crucială pentru cercetători și experți este identificarea factorilor predictivi implicați în severitatea mai mare a COVID-19 în ceea ce privește determinarea obiectivelor terapeutice pentru îmbunătățirea supraviețuirii, în special la pacienții cu boli critice.

Pacienții bolnavi critici experimentează mai multe modificări metabolice care cresc aportul de substanțe nutritive la țesuturile vitale și șansele de supraviețuire, cum ar fi eliberarea de hormoni hipofizari, stimularea sistemului nervos simpatic și epuizarea antioxidantă [ 17 , 18 ]. Micronutrienții, clasificați ca vitamine sau minerale, au un rol esențial în intermediari în metabolism, vindecarea rănilor, funcția imună, activitatea antioxidantă, diferențierea și proliferarea celulară, activitatea antioxidantă și coagularea sângelui. Nevoile de micronutrienți sunt crescute în timpul bolilor acute din cauza cererilor și pierderilor crescute [19] .

Diversi factori, inclusiv înaintarea în vârstă [20] , [21] , [22] , markeri inflamatori crescători (de exemplu, CRP) [ 21 , 23 ] și comorbidități (de exemplu, diabet zaharat și boli cardiovasculare) [ 21 , 22 ], au s-a dovedit a fi legat de o severitate mai mare și rata mortalității pentru COVID-19.

Rolul stării nutriționale în modularea funcției sistemului imunitar a fost anterior elucidat și afectează rezultatele bolilor infecțioase [24] . Câteva numere de studii s-au concentrat pe rolul deficiențelor de micronutrienți în prognosticul pacienților cu COVID-19. Rezultatul unei revizuiri sistematice și meta-analize a arătat că deficitul de vitamina D, în special la subiecții vârstnici, este asociat cu o severitate mai mare a bolii și a mortalității la pacienții cu COVID-19 [25] . Sa presupus că acest rezultat este legat de răspunsul inflamator mai mare la pacienții cu deficit de vitamina D, care se confruntă cu pacientul cu boală severă [26] .

Rezultatele noastre au întărit această ipoteză, dar au constatat că nivelul seric al vitaminei D nu a fost mai mic decât nivelurile serice normale mai scăzute ale vitaminei D și sunt asociate independent cu severitatea mai mare a COVID-19 în funcție de scorurile de implicare APACHE și CT pulmonar. Deficitul de vitamina C este o altă stare nutrițională care a primit puțină atenție ca cauză potențială a severității bolii. Un studiu pilot realizat de Arvinte și colab. [27] a constatat că deficiența de vitamina C, în afară de înaintarea în vârstă, este un potențial predictor al mortalității în rândul pacienților cu COVID-19 admis în terapie intensivă. De asemenea, efectele benefice ale administrării vitaminei C asupra pacienților cu afecțiuni critice au fost anterior elucidate, probabil datorită potențialelor sale efecte imunomodulatoare și antiinflamatorii [28]. Cu toate acestea, nivelurile de vitamina C au fost mai mici decât în ​​mod normal la pacienții noștri, iar rezultatele nu au arătat o asociere independentă între nivelul seric mai scăzut de vitamina C și scorurile de severitate mai mari.

Deși efectele reglatoare ale vitaminei A, diferite tipuri de vitamina B și vitamina E asupra sistemului imunitar au fost dovedite [ 7 , 29 ], niciun studiu nu s-a concentrat în mod specific pe asocierea dintre nivelurile acestor vitamine și prognosticul pacienților cu COVID-19. Am evaluat nivelurile serice ale acestor vitamine și nu am găsit valori semnificative în prezicerea severității bolii.

Efectele imunomodulatoare ale mineralelor în bolile infecțioase au fost evidențiate în mai multe studii [ 7 , 29 ]; cu toate acestea, puține studii s-au concentrat pe pacienții cu COVID-19. Mai multe studii au constatat că deficiența de zinc la pacienții cu COVID-19 este asociată cu o rată mai mare de complicații, spitalizări și mortalitate comparativ cu pacienții cu un nivel suficient de zinc [30] , [31] , [32] , [33]. Am arătat, de asemenea, că deficiența de zinc este corelată independent cu severitatea mai mare a COVID-19 pe baza atât a scorurilor de implicare APACHE, cât și a CT. Studiile privind deficiențele altor minerale la pacienții cu COVID-19 sunt rare. Am arătat o asociere independentă și inversă a nivelurilor serice de magneziu cu un scor de severitate mai mare, dar nu s-a găsit nicio asociere între deficiența de fier și severitatea COVID-19.

Ar trebui luate în considerare mai multe limitări potențiale în acest studiu. În primul rând, acesta este un studiu cu un singur centru, cu un număr mic de cazuri, care limitează analiza ulterioară cu mai mulți factori de control. În al doilea rând, având în vedere designul transversal al studiului nostru, cauzalitatea asocierii nu poate fi detectată. Pe de altă parte, unele condiții, cum ar fi utilizarea medicamentelor vasoactive, hipermetabolismul pacienților cu afecțiuni critice și necesitatea unei ventilații mecanice care crește micronutrienții necesari, sunt alte limitări ale studiului.

În general, rezultatele noastre consolidează dovezile că nivelurile serice de vitamina D, zinc și magneziu sunt asociate independent cu severitatea COVID-19. Studiile clinice randomizate sunt recomandate pentru a identifica eficacitatea suplimentelor de micronutrienți pentru îmbunătățirea prognosticului cazurilor severe de pacienți cu COVID-19. Dovezile au raportat că aportul unor substanțe nutritive poate necesita o creștere în anumite condiții, cum ar fi infecția, comparativ cu condițiile regulate [34] , [35] , [36] . În acest fel, unele dovezi au constatat că suplimentarea poate modifica severitatea răspunsului imun și a procesului inflamator și poate îmbunătăți supraviețuirea bolilor infecțioase [ 7 , 37 , 38], deși din cauza studiilor insuficiente, nu se poate face o concluzie definitivă în acest sens.Mergi la:

Concluzii

La pacienții cu COVID-19 au fost observate niveluri serice scăzute ale unor micronutrienți, cum ar fi B9, B12, vitaminele C și D, magneziu și fier. Mai mult, nivelurile mai scăzute de vitamina D, zinc și magneziu au fost corelate cu o boală mai severă. Recomandăm identificarea și abordarea deficienței micronutrienților care ar putea fi implicați în răspunsurile sistemului imunitar pentru a preveni boala COVID-19 severă.Mergi la:

Declarația autorului CRediT

Mohammad Taghi Beigmohammadi: Metodologie, Investigație, Curarea datelor, Scriere – Revizuire și editare; Sama Bitarafan: Conceptualizare, metodologie, vizualizare, supraveghere, administrare de proiecte, achiziție de fonduri, scriere – revizuire și editare; Alireza Abdollahi: Investigații, resurse; Laya Amoozadeh: investigație, curatarea datelor, vizualizare; Faeze Salahshour: investigații, resurse, curarea datelor; Maedeh Mahmoodi ali abadi: Investigații, resurse; Danesh Soltani: Analiză formală, Software, Scriere – Recenzie și editare; Zoya Asl Motalebnegad: Analiză formală, Scriere – Proiect original.Mergi la:

Mulțumiri

Autorii sunt recunoscători Universității de Științe Medicale și Servicii de Sănătate din Teheran pentru grantul COVID-19 (numărul de înregistrare al proiectului: 99-1-101-47100). În plus, autorii apreciază sprijinul și comentariile constructive ale biroului de cercetare metodologică, complexul spitalicesc Imam Khomeini, din Teheran, Iran.

Conflict de interese

Autorii declară că nu au interese financiare concurente cunoscute sau relații personale care ar fi putut părea să influențeze munca raportată în această lucrare.Mergi la:

Note de subsol

Universitatea de Științe Medicale și Servicii de Sănătate din Teheran a oferit finanțare pentru prezentul studiu (numărul grantului: 99-1-101-47100).

Mohammad Taghi Beigmohammadi și Sama Bitarafan au contribuit în mod egal la acest raport și sunt considerați co-autori.Mergi la:

Referințe

1. Wu Z, McGoogan JMJJ. Caracteristicile și lecțiile importante ale focarului de boală coronavirus 2019 (COVID-19) în China: Rezumatul unui raport de 72 314 cazuri de la Centrul chinez pentru controlul și prevenirea bolilor. JAMA. 2020; 323 : 1239–1242. [ PubMed ] [ Google Scholar ]2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y. Caracteristicile clinice ale pacienților infectați cu coronavirus roman 2019 din Wuhan, China. Lancet. 2020; 395 : 497-506. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]3. Wong C, Lam C, Wu A, Ip W, Lee N, Chan I. Citokine și chemokine inflamatorii plasmatice în sindromul respirator acut sever. Clin Exp Immunol. 2004; 136 : 95–103. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]4. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y. Caracteristici epidemiologice și clinice ale 99 de cazuri de pneumonie coronavirusă nouă din 2019 în Wuhan, China: Un studiu descriptiv. Lancet. 2020; 395 : 507–513. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]5. Zhang B, Zhou X, Qiu Y, Feng F, Feng J, Jia Y. Caracteristicile clinice ale a 82 de cazuri de deces cu COVID-19. Plus unu. 2020; 15 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]6. Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 și răspuns multi-organ. Curr Probl Cardiol. 2020 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]7. Gombart AF, Pierre A, Maggini SJN. O analiză a micronutrienților și a sistemului imunitar – Lucrând în armonie pentru a reduce riscul de infecție. Nutrienți. 2020; 12 : 236. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]8. Ong TP, Pérusse LJ. Impactul epigenomiei nutriționale asupra riscului și prevenirii bolii: Introducere. J Nutrigenet Nutrigenomics. 2011; 4 : 245–247. [ PubMed ] [ Google Scholar ]9. Singh V. Pot vitaminele, ca modificatori epigenetici, să sporească imunitatea la pacienții cu COVID-19 cu boli netransmisibile? Curr Nutr Rep. 2020: 1-8. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]10. Pecora F, Persico F, Argentiero A, Neglia C, Esposito SJ. Rolul micronutrienților în sprijinul răspunsului imun împotriva infecțiilor virale. Nutrienți. 2020; 12 : 3198. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]11. Jain A, Chaurasia R, Sengar NS, Singh M, Mahor S, Narain SJ. Analiza nivelului de vitamina D în rândul pacienților asimptomatici și bolnavi cu COVID-19 și corelația acesteia cu markerii inflamatori. Rep. Științific 2020; 10 : 1–8. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]12. Xu J, Yang X, Yang L, Zou X, Wang Y, Wu Y. Curs clinic și predictori ai mortalității de 60 de zile la 239 pacienți cu boală critică cu COVID-19: Un studiu retrospectiv multicentric de la Wuhan. China. Crit Care. 2020; 24 : 1-11. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]13. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. Declarația Consolidarea raportării studiilor observaționale în epidemiologie (STROBE): Liniile directoare pentru raportarea studiilor observaționale. Ann Int Med. 2007; 147 : 573-577. [ PubMed ] [ Google Scholar ]14. Bouch DC, Thompson JP. Sisteme de notare a gravității la bolnavii critici. Cont Educ Anaesth Crit Care Pain. 2008; 8 : 181–185. [ Google Scholar ]15. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N. Constatări toracice CT în boala coronavirus-19 (COVID-19): Relația cu durata infecției. Radiologie. 2020 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]16. Hu Y, Zhan C, Chen C, Ai T, Xia LJ. Rezultatele CT toracice legate de mortalitatea pacienților cu COVID-19: un studiu retrospectiv de serii de cazuri. Plus unu. 2020; 15 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]17. Preiser JC, Ichai C, Orban JC, Groeneveld A. Răspuns metabolic la stresul bolilor critice.Fr J Anaesth. 2014; 113 : 945-954. [ PubMed ] [ Google Scholar ]18. Manzanares W, Dhaliwal R, Jiang X, Murch L, Heyland DK. Micronutrienți antioxidanți la bolnavii critici: o analiză sistematică și meta-analiză. Crit Care. 2012; 16 : R66. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]19. Prelack K, Sheridan RL. Suplimentarea cu micronutrienți la pacientul critic: strategii pentru practica clinică. J Trauma. 2001; 51 : 601-620. [ PubMed ] [ Google Scholar ]20. Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y. Curs clinic și rezultatele pacienților cu afecțiuni critice cu pneumonie SARS-CoV-2 în Wuhan, China: Un studiu unic, retrospectiv, observațional. Lancet Respir Med. 2020; 8 : 475–481. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]21. Dai Z, Zeng D, Cui D, Wang D, Feng Y, Shi Y. Predicția pacienților cu COVID-19 cu risc crescut de progresie la boală severă. Sănătate publică frontală. 2020; 8 : 1-9. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]22. Ji D, Zhang D, Xu J, Chen Z, Yang T, Zhao P. Predicție pentru riscul de progresie la pacienții cu pneumonie COVID-19: Scorul CALL. Clin Infect Dis. 2020; 71 : 1393–1399. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]23. Li L, Sun W, Han M, Ying Y, Wang Q. Un studiu privind predictorii severității bolii COVID-19. Med Sci Monit. 2020; 26 –1. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]24. Calder PC, Carr AC, Gombart AF, Eggersdorfer MJ. Starea nutrițională optimă pentru un sistem imunitar care funcționează bine este un factor important de protejare împotriva infecțiilor virale. Nutrienți. 2020; 12 : 1181. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]25. Pereira M, Dantas Damascena A, Galvão Azevedo LM, de Almeida Oliveira T, da Mota Santana JJ. Deficitul de vitamina D agravează COVID-19: revizuire sistematică și meta-analiză. Crit Rev Food Sci Nutr. 2020: 1-9. [ Google Scholar ]26. Alipio M. Suplimentarea cu vitamina D ar putea îmbunătăți rezultatele clinice ale pacienților infectați cu coronavirus-2019 (COVID-19). SSRN. 2020 [Epub înainte de tipărire].27. Arvinte C, Singh M, Marik P. Nivelurile serice de vitamina C și vitamina D într-o cohortă de pacienți cu COVID-19 bolnavi în critică dintr-o unitate de terapie intensivă a spitalului comunitar nord-american în mai 2020: Un studiu pilot. Med Drug Discovery. 2020; 8 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]28. Abobaker A, Alzwi A, Alraied AH. Prezentare generală a rolului posibil al vitaminei C în gestionarea COVID-19. Rep. Pharmacol 2020: 1-12. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]29. Shakoor H, Feehan J, Al Dhaheri AS, Ali HI, Platat C, Ismail LC. Rolul imunostimulant al vitaminelor D, C, E, zinc, seleniu și acizi grași omega-3: ar putea ajuta împotriva COVID-19? Maturitas. 2021; 143 : 1-9. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]30. Jothimani D, Kailasam E, Danielraj S, Nallathambi B, Ramachandran H, Sekar P. COVID-19: Rezultate slabe la pacienții cu deficit de zinc. Int J Infect Dis. 2020; 100 : 343–349. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]31. Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI. Infecții cu zinc și tractul respirator: perspective pentru COVID-19. Int J Mol Med. 2020; 46 : 17–26. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]32. Gonçalves TJM, Gonçalves SEAB, Guarnieri A, Risegato RC, Guimarães MP, de Freitas DC. Asocierea între nivelurile scăzute de zinc și severitatea sindromului de detresă respiratorie acută de noul coronavirus SARS-CoV-2. Nutr Clin Pract. 2021; 36 : 186–191. [ PubMed ] [ Google Scholar ]33. Zabetakis I, Lordan R, Norton C, Tsoupras AJ. COVID-19: Legătura inflamației și rolul nutriției în atenuarea potențială. Nutrienți. 2020; 12 : 1466. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]34. Comitetul pentru dietă și sănătate al Consiliului Național de Cercetare (SUA). National Academies Press; Washington, DC: 1989. Dieta și sănătatea: implicații pentru reducerea riscului de boli cronice. [ Google Scholar ]35. Fairfield KM, Fletcher RH. Vitamine pentru prevenirea bolilor cronice la adulți: revizuire științifică. JAMA. 2002; 287 : 3116–3126. [ PubMed ] [ Google Scholar ]36. Fletcher RH, Fairfield KM. Vitamine pentru prevenirea bolilor cronice la adulți: aplicații clinice. JAMA. 2002; 287 : 3127-3129. [ PubMed ] [ Google Scholar ]37. Long KZ, Montoya Y, Hertzmark E, Santos JI, Rosado JL. Un studiu clinic dublu-orb, randomizat, al efectului suplimentării cu vitamina A și zinc asupra bolilor diareice și a infecțiilor tractului respirator la copiii din Mexico City, Mexic. Sunt J Clin Nutr. 2006; 83 : 693–700. [ PubMed ] [ Google Scholar ]38. Annweiler G, Corvaisier M, Gautier J, Dubée V, Legrand E, Sacco G. Suplimentarea cu vitamina D asociată cu o mai bună supraviețuire la pacienții vârstnici fragili spitalizați cu COVID-19: Studiul cvasi-experimental GERIA-COVID. Nutrienți. 2020; 12 : 3377. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]

Suplimentarea esențială de zinc, acizi grași polinesaturați ω-3, vitamina D și magneziu pentru prevenirea și tratamentul COVID-19, diabet, boli cardiovasculare, boli pulmonare și cancer

Abstract

În ciuda dezvoltării unui număr de vaccinuri pentru COVID-19, rămâne nevoia de prevenire și tratament a virusului SARS-CoV-2 și a bolii care rezultă COVID-19. Acest raport discută elementele cheie ale SARS-CoV-2 și COVID-19 care pot fi ușor tratate: intrarea virală, sistemul imunitar și inflamația și furtuna de citokine. Se arată că substanțele nutritive esențiale zinc, acids-3 acizi grași polinesaturați (PUFA), vitamina D și magneziu oferă combinația ideală pentru prevenirea și tratamentul COVID-19: prevenirea intrării SARS-CoV-2 în celulele gazdă, prevenirea proliferarea SARS-CoV-2, inhibarea inflamației excesive, control îmbunătățit al reglării sistemului imunitar, inhibarea furtunii de citokine și reducerea efectelor sindromului de detresă respiratorie acută (ARDS) și a bolilor asociate netransmisibile.Se subliniază faptul că bolile netransmisibile asociate cu COVID-19 sunt în mod inerent mai răspândite la vârstnici decât la tineri și că menținerea suficientă a zincului, ω-3 PUFA, vitamina D și magneziu este esențială pentru prevenirea persoanelor în vârstă. apariția bolilor netransmisibile precum diabetul, bolile cardiovasculare, bolile pulmonare și cancerul. Verificarea anuală a nivelurilor acestor substanțe nutritive esențiale este recomandată celor cu vârsta peste 65 de ani, împreună cu ajustări adecvate ale aportului lor, aceste servicii și livrări fiind la costuri guvernamentale. Raportul cost: beneficiu ar fi imens, deoarece costul nutrienților și testarea nivelurilor acestora ar fi foarte mici în comparație cu economiile de costuri ale specialiștilor și spitalizarea.

Abrevieri

1α, 25 (OH) 2 D 3 1α, 25-dihidroxivitamina D 3 , calcitriol 25 (OH) D 25-hidroxivitamina D 3 AS enzima de conversie a angiotensinei ACE2 enzima de conversie a angiotensinei 2 ADAM17 domeniul dezintegrinei și metaloproteinazei 17 ALA acidul α-linolenic Ang angiotensină SDRA sindromul bolii respiratorie acute ATR1 Receptorul AT1 CCL2 (MCP-1) proteine ​​chemotactice monocite-1 CCL3 (MIP-1α) proteină inflamatorie macrofagă 1α c-Kit receptorul factorului de celule stem CRP proteina C-reactiva CYP27B1 1α-hidroxilaza DHA acid docosahexaenoic EPA Acid eicosapentaenoic ERK1 / 2 kinază extracelulară reglată semnal 1/2 FGF factorul de creștere a fibroblastelor G-CSF factor de stimulare a coloniei de granulocite GM-CSF factor de stimulare a coloniilor granulocite-macrofage HCQ hidroxiclorochină HIF-1α factor 1-α inductibil de hipoxie IFN-γ interferon-γ IL-x interleukin x IL-1RN Proteina antagonistă a receptorului IL-1 IP-10 proteină interferon-γ-inductibilă M1,2 macrofag tip 1, (sau 2) MMP-2,9 metalopeptidaza matrice 2, (sau 9) NF-κB factorul nuclear κ-amplificatorul lanțului ușor al celulelor B activate P38 MAPK p38 proteine ​​kinaze activate de mitogen PDGF factor de creștere derivat din trombocite PGE2 prostaglandina E 2 PUFA acid gras polinesaturat RANTES reglată la activare, celula T normală exprimată și probabil secretată RAS sistemul renină-angiotensină ROS specii reactive de oxigen SAA amiloid seric A SCF factorul celulelor stem TGF-β transformând factorul de creștere β Th T ajutor TLR receptor de tip taxă TMPRSS2 serin protează transmembranară 2 TNF-a factor de necroză tumorală α Treg celula T reglatoare VDR receptorul vitaminei D VEGF factorul de creștere endotelial vascular Mergi la:

1. Introducere

SARS-CoV este SARS original care a fost virulent la începutul anilor 2000; este virusul care duce la starea bolii COVID-19. Există o nevoie imediată de profilaxie și tratament pentru COVID-19. va fi întotdeauna nevoie de profilaxie și tratament pentru viruși și comorbidități asemănătoare, în special în țările mai sărace. Prin urmare, este oportun să prezentăm avantajele combinației esențiale de zinc, FA-3 PUFA, vitamina D și magneziu, deoarece aceste tratamente au un cost redus, sunt extinse în acțiuni și sunt sigure, deoarece sunt prezente în mod natural în corpul uman.

A fost prezentată anterior suficiența esențială de zinc, FA-omega 3 PUFA și vitamina D pentru prevenirea și tratamentul cancerelor [ 1 ]. Prevenirea și tratamentul COVID-19 și comorbiditățile asociate sunt în prezent cele mai preocupante. Mai mult, cele patru boli principale netransmisibile care sunt cele mai răspândite la nivel mondial sunt diabetul, bolile cardiovasculare, bolile pulmonare și cancerul [ 2].]. Comorbiditățile discutate aici în contextul COVID-19 includ aceste boli netransmisibile, precum și îmbătrânirea și obezitatea. Zincul, FA-3 PUFA, vitamina D și magneziu, deși sunt foarte diferite în modul lor de acțiune, au multe efecte finale similare. Comunitatea zincului, a ω-3 PUFA(acizi grazi polinesaturati), a vitaminei D și a magneziului în situații inflamatorii inhibitoare, precum și a capacității lor de a corecta disfuncția imună, împreună cu costul redus și siguranța acestor nutrienți, le face ideale ca măsuri de prevenire de primă linie și adjuvanți în tratarea COVID-19 și comorbiditățile asociate, precum și principalele boli netransmisibile în situații non-COVID.

În pregătirea acestui manuscris au fost efectuate ample căutări în literatură. PubMed a fost utilizat în principal cu o gamă largă de șiruri de căutare. S-au făcut căutări separate pentru concepte cheie împreună cu fiecare dintre componentele individuale: ie, zinc; (PUFA SAU DHA SAU EPA); vitamina D; magneziu. O căutare PubMed a fost efectuată folosind următorul șir de căutare: (COVID-19 SAU SARS-CoV-2 SAU coronavirus) ȘI zinc ȘI (PUFA SAU DHA SAU EPA) ȘI „vitamina D” ȘI magneziu. Această căutare a produs rezultate zero, sugerând că nu au existat practic studii care să examineze efectele benefice ale suplimentării tuturor celor patru componente esențiale împreună: zinc, PUFA ω-3, vitamina D și magneziu. Cu toate acestea, cele patru componente sunt descrise sau menționate într-o serie de analize ale stării nutriționale și funcției imune și / sau inflamației [de exemplu, Ref. [[3] , [4] , [5] , [6] ]].Mergi la:

2. Zinc

Zincul este un cofactor vital pentru mai mult de 2000 de factori de transcripție și 300 de enzime în reglarea diferențierii și proliferării celulare, precum și a funcțiilor metabolice de bază ale celulelor [ 7 ]. Deficitul de zinc este o problemă la nivel mondial, cu aproximativ 2 miliarde de persoane supuse unor diete cu deficit de zinc [ 7 , 8 ]. Deficiența de zinc nu se limitează la țările în curs de dezvoltare, deoarece există și în lumea industrializată, în principal la vârstnici [ 9 , 10 ]. La adulții sănătoși normali, concentrația plasmatică de zinc este de obicei 14-23 μmol / L (0,9-1,5 μg / ml) [ 11 ].

Factorii de risc asociați cu deficitul de Zn au fost bine raportați în literatura de specialitate [ [12] , [13] , [14] ]. Deficitul de zinc poate provoca un dezechilibru atât în ​​sistemul imunitar înnăscut, cât și în cel adaptiv, cu deficiență severă care duce la infecții, tulburări ale pielii, tulburări gastro-intestinale, pierderea în greutate, întârzierea creșterii și hipogonadism masculin, printre alte simptome [ [14] , [15] , [ 16] , [17] ]. S-a constatat că nivelurile scăzute de zinc afectează funcția diferitelor tipuri de celule imune, inclusiv macrofage, neutrofile, mastocite și celule dendritice [ 11 , 18]. Zincul este, de asemenea, esențial pentru dezvoltarea, diferențierea și activarea celulelor T [ 19 ]. Prin urmare, deficiența de zinc poate avea ca rezultat afectarea producției, activării și maturării celulelor ucigașe naturale (imunitate înnăscută mediată de celule), a celulelor T (imunitate adaptivă mediată de celule) și a celulelor B (imunitate adaptivă umorală) [ 5 ].

Deficitul de zinc, care este raportat frecvent la vârstnici, scade funcția imunitară, scade rezistența la agenții patogeni invadatori și crește riscul de a contracta pneumonie [ 20 , 21 ]. Deficitul de zinc apare de asemenea frecvent la pacienții cu boli cardiovasculare, boli pulmonare cronice, diabet sau obezitate [ 22 , 23 ].

Zincul își exercită activitatea antiinflamatorie prin inhibarea activării și semnalizării NF-κB și prin controlul funcțiilor de reglare a celulelor T (Treg) [ 12 ]. Suplimentarea cu zinc determină înclinarea celulelor Th17 pro-inflamatorii către celulele Treg antiinflamatoare [ 24 ]. Suplimentarea cu zinc inhibă NF-κB prin expresia proteinei A20, rezultând în suprimarea TNF-α, IL-1β, IL-6, IL-8, IL-12, IL-18, IFN-γ, iNOS, COX-2 , GM-CSF [ 12 , 25 ].

Macrofagele, neutrofilele și celulele T sunt activate prin creșterea citokinelor, inclusiv IL-1, IL-6 și TNF-α, ducând deseori la sindromul de detresă respiratorie acută (ARDS) [ 26 ]. Nivelurile de IL-6, IL-8 și TNF-α sunt crescute la persoanele în vârstă cu deficit de zinc, precum și la persoanele obeze [ 17 , 27 ], iar suplimentarea cu zinc s-a dovedit a reduce aceste niveluri [ 10 ].

Când nivelurile de specii reactive de oxigen (ROS) sunt crescute, așa cum se întâmplă frecvent în deficiența de zinc, rezultă daune oxidative. Suplimentarea cu zinc scade producția de ROS și aceasta are rezultate benefice, în special la vârstnici și în diabetul zaharat [ 13 ].

Au fost prezentate o serie de analize cuprinzătoare ale zincului și implicarea acestuia în îmbătrânirea, virusurile de tip COVID și comorbiditățile [de exemplu, Ref. [ 27 , 28 ]]. Suficiența zincului este vitală pentru reducerea factorilor de risc asociați cu COVID-19, cum ar fi obezitatea, diabetul, bolile cardiovasculare, bolile pulmonare și îmbătrânirea [ 12 , 29 ]. Suplimentarea fiziologică a Zn la îmbătrânire și la bolile degenerative legate de vârstă corectează defectele imune și reduce recăderea infecției [ 30 ].

Una dintre problemele suplimentării cu zinc a fost variabilitatea biodisponibilității zincului în celule. S-a constatat că creșterea nivelurilor intracelulare de zinc folosind ionofori precum piritionul poate reduce în mod eficient replicarea unei varietăți de viruși, inclusiv replicarea SARS-CoV [ 31 ]. Din păcate, piritionul nu este recomandat pentru utilizare internă, în timp ce este eficient și sigur atunci când este utilizat local. Alți ionofori de zinc dovediți includ clorochina și hidroxiclorochina (HCQ) [ 12 , 32 , 33 ], disulfiram [ 33 ], quercetina și epigalocatechin-galatul [ 34 ] și zincoforina [ 35 ]. În plus, Rizzo [ 36] a prezentat o justificare solidă pentru ca ivermectina să fie un ionofor pentru zinc. Sunt planificate sau în curs de desfășurare o serie de studii clinice care se bazează pe HCQ și zinc și ivermectină și zinc, împreună în unele cazuri cu un antibiotic precum azitromicina sau doxiciclina [ 37 ]. Interesant este faptul că studiile HCQ se bazează fundamental pe testarea dacă zincul completează HCQ și nu dacă HCQ completează zincul care ar fi de așteptat dacă HCQ ar fi recunoscut ca un ionofor pentru zinc. Un comentariu similar se aplică ivermectinei. Ultimul rezumat al studiilor în curs la momentul pregătirii acestui manuscris a fost cel al lui Pal și colab. [ 38 ].

Zincul este, de asemenea, cunoscut pentru capacitatea sa de a modula imunitatea antivirală și antibacteriană [ 12 ]. Proprietățile antibacteriene ale zincului sunt bine demonstrate împotriva S. pneumoniae [ 12 ]. Mai mult, zincul are capacitatea de a reduce riscul co-infecției bacteriene prin îmbunătățirea funcției pulmonare prin eliminarea mucociliară și protejarea funcției barierei pulmonare.

Zincul inhibă ARN-polimeraza SARS-CoV și, prin urmare, capacitatea sa de replicare [ 17 ]. Zincul a fost, de asemenea, postulat ca un stabilizator al membranelor celulare care ar putea ajuta la blocarea intrării virusului în celule [ 39 ]. În acest context, zincul scade activitatea enzimei de conversie a angiotensinei 2 (ACE2) care este necesară pentru legarea cu SARS-CoV-2 pentru intrarea celulelor [ 12 ]. Wessels și colegii de muncă [ 40] a concluzionat că zincul are mai multe funcții în inhibarea intrării virale în celulele gazdă și a activității: prevenirea fuziunii cu membrana gazdă, inhibarea polimerazei virale și replicarea ulterioară, afectarea traducerii și procesării proteinelor, blocarea eliberării particulelor virale și destabilizarea învelișului viral. S-a demonstrat că deficiența de zinc crește scurgerea epiteliului căilor respiratorii utilizând un model ex vivo [ 41 ], spre deosebire de suplimentarea cu zinc care s-a dovedit că îmbunătățește integritatea pulmonară la un model de șoarece prin recrutarea scăzută a neutrofilelor la nivelul plămâni [ 42 ].

Conform NIH, Biblioteca Națională de Medicină a SUA, nu există studii formale care să evalueze zincul pentru gestionarea COVID-19 care au fost finalizate și raportate până în prezent, deși în prezent sunt înregistrate mai multe studii pentru a testa zincul ca parte a diferitelor regimuri de tratare a COVID- 19 [ 37 ] Cu toate acestea, s-a constatat că suplimentarea cu zinc are un efect benefic asupra pacienților cu COVID-19 [ 43 , 44 ]. Un studiu efectuat pe 47 de pacienți cu COVID-19 a arătat că 57% dintre pacienții cu COVID-19 erau deficienți în zinc. Acești pacienți cu deficit de zinc au dezvoltat mai multe complicații și au crescut mortalitatea decât cei cu nivel normal de zinc45 ].

În ceea ce privește vârstnicii, suplimentarea cu 45 mg zinc elementar pe zi a redus semnificativ incidența infecției la subiecții vârstnici, variind de la 55 de ani la 87 de ani [ 10 ]. Consumul de aproximativ 25-40 mg de zinc pe zi este accesibil și este mai puțin probabil să inducă toxicitate umană, întrucât mai mult de 200-400 mg pe zi de zinc poate induce evenimente adverse 46 ].Mergi la:

3. Acizi grași polinesaturați ω-3 (PUFA)

omega -3 acizi grasi / PUFA nu au primit atenția pe care o merită în prevenirea și tratamentul COVID-19 și comorbiditățile asociate. FA-3 PUFA au proprietăți care sunt semnificativ diferite de cele ale zincului, vitaminei D și magneziului, proprietăți care sunt totuși ideale pentru prevenirea și tratamentul COVID-19, obezitatea și diabetul, bolile cardiovasculare, bolile pulmonare cronice și cancerul și îmbunătățirea funcția imună și efectele antiinflamatorii la îmbătrânirea generală [ 1 , [47] , [48] , [49] ].

SARS-CoV și SARS-CoV-2 sunt foarte asemănătoare și sunt ambii virusuri învăluite care pot duce la dezvoltarea ARDS. S-a demonstrat că PUFA ω-3, în special acidul eicosapentaenoic (EPA) și acidul docosahexaenoic (DHA), inactivează virusurile învelite, precum și inhibă proliferarea unei game de organisme microbiene [ 50 ].

Eficacitatea acidului α-linolenic (ALA) în tratarea inflamației și a deficienței imune s-a dovedit în mai multe cazuri a fi similară cu cea a DAH și EPA, deși de obicei potența este în ordinea DHA> EPA> ALA [de exemplu, 49,51]. S-a raportat că uleiul bogat în ALA a provocat o modulare imună în cancer similară cu cea din uleiul de pește, care a fost însoțită de o scădere a producției de macrofage de citokine pro-inflamatorii (de exemplu, TNF-α și IL-6) [ 52 ] .

FA-3 PUFA au un rol important în reglarea macrofagelor deoarece modulează producția de citokine și chemokine de către macrofage; schimbă capacitatea de fagocitoză a macrofagelor și transformă macrofagele de la pro-inflamatorii (macrofage de tip M1) la antiinflamatoare (M2) de tip [ 53 ]. FA-3 PUFA și metaboliții lor au un efect modulant asupra neutrofilelor, deoarece afectează migrația neutrofilelor, capacitatea fagocitară și producția de ROS [ 53 ].

Weill și colegii de muncă [ 51 ] au descris acțiunea PUFA ca având două faze în inhibarea inflamației: o fază de promovare în care FA-6 PUFA, cum ar fi AA, conduc la sinteza leucotrienelor și prostaglandinelor pro-inflamatorii prin acțiunea ciclooxigenazelor, lipoxigenaze și citocrom P450; și o fază de rezoluție în care PUFA ω-3 sunt precursori ai unor mediatori activi puternici precum rezolvine, maresine și protectine care inhibă sinteza citokinelor pro-inflamatorii prin reglarea descendentă a căii NF-κB. Resolvinele provin din EPA și DHA, iar proteininele provin din DHA; au efecte antiinflamatorii prin limitarea infiltrării leucocitelor în țesuturile infectate [ 51 , 54]. Maresinii provin din DHA și, de asemenea, rezolvă inflamația [ 51 , 55 ].

FA-3 PUFA se remarcă prin influența lor asupra proprietăților plutelor lipidice, care la rândul lor îndeplinesc un rol important în funcționarea prospectului exterior al membranelor celulare. FA-3 PUFA reglează proprietățile membranei, cum ar fi fluiditatea membranei și transducția semnalului [ 1 ]. S-a demonstrat că SARS-CoV se bazează pe integritatea plutei lipidice pentru intrarea virusului în celulele gazdă [ 56 , 57 ]. Receptorul de intrare pentru coronavirus, ACE2, este situat în plute lipidice. Endocitoza mediată de receptorul ACE2 este urmată de activarea proteinei spike din învelișul viral de către serin proteaza transmembranară 2 (TMPRSS2) care se află adiacent receptorului ACE2 [ 51].]. S-a demonstrat că FA-3 PUFA inhibă intrarea celulară prin ACE2 și activitatea enzimatică a TMPRSS2 [ 51 , 58 ]. Efectul perturbator al PUFA-urilor ω-3 asupra integrității plutelor lipidice a fost descris înainte [ 1 ], unde PUFA-urilor ω-3 au fost descrise ca cauzând perturbări ale plutei lipidice datorită afinității foarte slabe a PUFA-urilor ω-3 pentru colesterol. Prin urmare, este clar că FA-3 PUFA au multiple efecte inhibitoare asupra intrării virale în celulele gazdă.

Au existat o serie de studii clinice care confirmă efectele anti-inflamatorii și de răspuns imun ale suplimentării cu PUFA ω-34 , 5 , [59] , [60] , [61] ]. Potrivit NIH, Biblioteca Națională de Medicină a SUA, nu există studii formale care să evalueze FA-3 PUFA pentru managementul COVID-19 care au fost finalizate și raportate până în prezent, deși în prezent sunt înregistrate patru studii pentru a testa FA-3 PUFA ca parte a diferite regimuri [ 37 ].Mergi la:

4. Vitamina D

Vitamina D obținută din lumina soarelui sau din surse dietetice este catalizată de vitamina D-25-hidroxilază din ficat în 25-hidroxivitamină D 3 (25 (OH) D), principala formă circulantă a vitaminei D. 25 (OH) D este biologic inertă până când este hidroxilat de enzima 1α-hidroxilază (CYP27B1) în rinichi până la forma activă 1α, 25-dihidroxivitamină D 3 (calcitriol, 1α, 25 (OH) 2 D 3 ) [ 62 ].

Calcitriolul are efecte imunoreglatorii și antiinflamatorii importante pe care le exercită prin interacțiunea cu receptorul de vitamina D (VDR). Complexul calcitriol / VDR poate interacționa cu diferiți factori de transcripție a genelor care controlează răspunsurile inflamatorii [ 63 ]. VDR și CYP27B1 sunt exprimate în multe tipuri de celule imune, inclusiv limfocite, monocite / macrofage, celule dendritice, celule T și B [ 64 , 65 ] și pe celule epiteliale pulmonare. Aceste celule imune pot converti 25 (OH) D în calcitriol biologic activ [ 63 , 66]. Complexul calcitriol / VDR determină transcrierea peptidelor antimicrobiene catelicidine și defensine. Catelicidinele perturbă membranele celulare bacteriene, precum și virusurile învelite, cum ar fi SARS-CoV-2, în timp ce defensinele promovează chimiotaxia celulelor inflamatorii prin permeabilitatea capilară crescută [ 65 , 67 ].

Sinteza vitaminei D în piele este controlată de anotimp, de timpul expunerii în timpul zilei și de latitudine [ 68 , 69 ]. Vitamina D este slab sintetizată deasupra (spre nord) și sub (spre sud) de 35 ° latitudine în lunile de iarnă [ 70 ]. Blocările, implementate pentru a minimiza răspândirea COVID-19, sunt, prin urmare, dăunătoare sintezei vitaminei D, deoarece persoanele sunt împiedicate să iasă din casele lor și să absoarbă soarele, ceea ce are un efect cumulativ în lunile de iarnă, când COVID-19 este mai răspândit. . Populațiile negre și asiatice produc mai puțină vitamină D ca urmare a unui conținut mai ridicat de melanină pe piele decât cele cu pielea albă [ 71 ]. Expunerea excesivă la lumina soarelui este cauza principală a cancerului de piele [ 72]. Cu toate acestea, există o incidență crescută a cancerului de piele și a altor tipuri de cancer în țările cu niveluri scăzute de lumină solară, comparativ cu țările cu niveluri mai ridicate de lumină solară pe tot parcursul anului [ 73 , 74 ], susținând propunerea că lumina soarelui este benefică pentru sinteza vitaminei D și prevenirea ulterioară a cancerelor. Au existat o serie de rapoarte în care sa demonstrat că expunerea scăzută la soare are un impact negativ asupra unei serii de probleme de sănătate [ [75] , [76] , [77] ]. Avantajul expunerii la soare în furnizarea vitaminei D trebuie să fie echilibrat în mod sensibil împotriva riscului potențial de cancer de piele din cauza expunerii excesive la soare [ 78 ].

În stadiile incipiente ale inflamației acute, vitamina D inhibă proliferarea celulelor Th1 și Th17 și eliberarea lor anormală de IFN-γ, TNF-α, IL-1, IL-2, IL12, IL-23 și IL-17, IL -21 [ 65 ]. În timpul fazei de rezoluție a inflamației, vitamina D mediază diferențierea celulelor Th2 și eliberarea citokinelor lor antiinflamatorii (IL-4 și IL-10), evitând leziunile organelor care ar putea fi cauzate de un răspuns imun excesiv [ 65].]. Vitamina D are proprietăți antiinflamatorii puternice care joacă un rol important în controlul funcției imune în infecția pulmonară; de exemplu, inhibă efectele TNF-α, inhibă activitatea NF-κB în celulele imune, inhibă activarea inflammasomilor și, prin urmare, eliberarea IL-1β și scade expresia IL-6, un factor important al -numită „furtună de citokine” [ 65 , 79 ].

Răspunsul imunitar acționează împreună cu răspunsul inflamator. Sistemul imunitar înnăscut acționează ca prima linie de apărare împotriva agenților patogeni invadatori, cum ar fi virușii. Calcitriolul sporește această apărare prin recrutarea neutrofilelor, monocitelor / macrofagelor și a celulelor dendritice care omoară și elimină agenții patogeni virali, inițind în cele din urmă răspunsul imun adaptiv. Acest răspuns poate fi hiperactiv rezultând furtuna de citokine. Calcitriolul inhibă acest răspuns imun cronic prin reglarea descendentă a receptorilor asemănători cu taxele (TLR) care identifică inițial agenții patogeni virali și inhibă căile de semnalizare TNF-α / NF-κB și IFN-γ. Calcitriolul deplasează profilul celulelor T de la formele pro-inflamatorii Th1 și Th17 la formele antiinflamatorii Th2 și respectiv Treg [ 80]]. Tregele oferă o apărare majoră împotriva inflamației, eliberând citokine antiinflamatorii IL-10 și TGF-β. Nivelurile de Treg sunt semnificativ scăzute în boala COVID-19 severă, spre deosebire de nivelurile ridicate de Treg corelate cu nivelurile reduse de boli virale [ 81 ].

Celulele ucigașe naturale sunt celule imune înnăscute și se știe că posedă o activitate antivirală puternică, precum și activitate anticancerigenă [ 82 ]. Numărul și activitatea celulelor ucigașe naturale s-au dovedit a fi reduse sub valorile normale la pacienții cu COVID-19 și s-a constatat că vitamina D crește activitatea celulelor ucigașe naturale [ 82 ].

Deși există inconsecvență în date, este evident că deficitul de vitamina D este influențat în creșterea riscului de infecții ale tractului respirator acut [ 83 ], în special atunci când se ia în considerare scăderea sintezei naturale a vitaminei D în timpul iernii, când infecțiile respiratorii acute sunt cele mai prevalent. Ali [ 84 ] a efectuat un studiu al cazurilor și mortalității COVID-19 în 20 de țări europene, constatând că starea vitaminei D se corela negativ cu cazurile COVID-19, dar nu și cu mortalitatea. S-a arătat, de asemenea, eficiența cantității de vitamina D în reducerea riscului de infecții acute ale tractului respirator viral și pneumonie. Rezultate similare au fost raportate de Kara și colegii de muncă [ 85], care a discutat, de asemenea, legătura dintre latitudine, temperatură și umiditate și sezon pe infecțiile tractului respirator viral.

Allegra și colegii de muncă [ 86 ] au raportat despre deficiența și suplimentarea unei game de vitamine, inclusiv vitamina D, în special în corelarea hipovitaminozei cu riscul de a contracta COVID-19 și a mortalității asociate. Ei au raportat că au existat rezultate pozitive și nedeterminate în analiza lor de studii multiple. Nivelurile de vitamina D au fost reduse în special la populațiile îmbătrânite din Italia, Spania și Elveția, care au fost cele mai sensibile populații în raport cu infecția cu SARS-CoV-2 [ 87 ]. În plus, Annweiler și colegii de muncă [ 88] a analizat o serie de rapoarte cu concluzia că s-au găsit corelații inverse între 25 (OH) D niveluri la pacienți și incidența și mortalitatea COVID-19. Alte rapoarte au acoperit, de asemenea, influența vitaminei D asupra rezultatelor pacienților cu COVID-19, constatând în mod tipic că suplimentarea cu vitamina D duce la un rezultat îmbunătățit pentru acești pacienți și că deficiența de vitamina D crește riscul și susceptibilitatea pentru boala COVID-19 severă și mortalitate 69 , 84 , 87 , [89] , [90] , [91] , [92] , [93] , [94] , [95] , [96] , [97] ,[98] , [99] ].

Într-o altă analiză, Lau și colegii de muncă [ 100 ] au constatat că deficiența de vitamina D a fost foarte răspândită la pacienții cu COVID-19 severă, care s-a corelat la rândul său cu obezitatea, sexul masculin, vârsta avansată, concentrația populației în climatul nordic, coagulopatia și imunitatea. disfuncție. O altă meta-analiză a constatat că deficiența de vitamina D a crescut riscul de infecții severe și mortalitate a bolnavilor critici [ 101 ]. Deficiența vitaminei D a fost susținută în continuare pentru a crește riscul de a contracta osteoporoză, cancer, diabet, scleroză multiplă, hipertensiune și boli inflamatorii și imunologice [ 102 ]. Deși vitamina D și beneficiile suplimentării în prevenirea cancerului au fost discutate anterior [ 1], este de remarcat faptul că un număr de cercetători au demonstrat că riscul de incidență și deces al cancerului este redus cu suplimentarea cu vitamina D [de exemplu, Ref. [ [103] , [104] , [105] ]]. Mecanismul de acțiune al vitaminei D în reducerea riscului de cancer a fost, de asemenea, abordat într-o serie de recenzii [de exemplu, Ref. [ [106] , [107] , [108] ]].

S-a specificat că un nivel rezonabil de 25 (OH) D în ser este de cel puțin 30 ng / mL (75 nmol / L) [ 93 , 109 ], cu o preferință pentru 40-60 ng / mL (100-150 nmol / L) pentru a asigura o sănătate bună, în special la vârstnici [ 69 , 110 ].

Pe scurt, vitamina D împiedică intrarea și replicarea SARS-CoV-2, reduce nivelul citokinelor pro-inflamatorii, crește nivelul citokinelor antiinflamatorii și crește producția de peptide antimicrobiene naturale [ 111 ].Mergi la:

5. Magneziu

Magneziul este un element esențial în funcționarea biologică optimă a corpului uman. Magneziul este cel de-al doilea cation intracelular din corpul uman și este fundamental pentru fosforilarea oxidativă, glicoliza, transcrierea ADN și sinteza proteinelor [ 112 ]. Nivelurile de magneziu nu sunt analizate în mod obișnuit în practica clinică [ 113 ] ceea ce înseamnă că a existat o raportare limitată a corelațiilor de magneziu pentru pacienții cu COVID-19 [ 113 , 114 ]. În ciuda acestui fapt, au existat unele rapoarte privind starea magneziului mai mică în cazurile severe de COVID-19 decât în ​​cazurile mai puțin severe [ [115] , [116] , [117]]. Pe de altă parte, au existat o serie de recenzii excelente despre magneziu și esențialitatea acestuia în menținerea funcției imune corespunzătoare și controlul stresului oxidativ și al inflamației de grad scăzut, în special la vârstnici [de exemplu, Refs. [ 112 , [118] , [119] , [120] , [121] , [122] ]].

Magneziul este esențial pentru activarea vitaminei D [ 122 , 123 ]. Prin urmare, magneziul și vitamina D sunt importante atât pentru funcția imunitară, cât și pentru stabilitatea celulară și este necesară suficiența ambelor pentru a contracara efectele dăunătoare ale dezvoltării COVID-19 [ 122 ].

Deficiența de magneziu este frecventă și s-a estimat că la o populație dată până la 30% poate avea un deficit de magneziu [ 122 ]. Magneziul este depozitat în principal în os (> 50%), cu doar ∼1% în ser [ 124 ]. Homeostazia cu magneziu este menținută prin absorbția din tractul gastro-intestinal, excreția renală și schimbul din os. Estimările privind suficiența magneziului sunt, prin urmare, dubioase dacă se bazează doar pe analiza serică [ 118 ]. Cu toate acestea, 0,75 mmol / L a fost sugerat ca nivel seric sub care există deficiența de magneziu [ 125 ] și 0,85 mmol / L ca nivel necesar pentru suficiența magneziului [ 118 ].

Magneziul are efecte antiinflamatorii și anti-oxidative, precum și asigură vasodilatație și neuroprotecție [ 120 ]. Magneziul suprimă NF-κB, expresia IL-6 și TNF-α și nivelurile de proteină C reactivă (CRP) [ 6 , 121 , 126 ]. Prin urmare, magneziul reglează sistemul cardiovascular, digestiv, neurologic și respirator, contribuind semnificativ la menținerea sănătății umane normale [ 120]. ]. În acest context, aporturile dietetice de magneziu se corelează negativ cu bolile cardiovasculare, bolile renale și diabetul [ 118 , 127 ].Mergi la:

6. COVID-19

SARS-CoV-2 este un virus insidios care cauzează boala COVID-19. Există multe asemănări între SARS-CoV-2 și cel mai recent coronavirus SARS-CoV. Pentru a prezenta esențialitatea generală a asigurării suficientului de zinc, FA-3 PUFA, vitamina D și magneziu, vor fi discutate etapele cheie care contribuie la incursiunea SARS-CoV-2 și la dezvoltarea COVID-19. Acestea sunt intrarea virală, implicarea sistemului imunitar și a inflamației și furtuna ulterioară de citokine care provoacă eventuala morbiditate și mortalitate asociată cu COVID-19.

6.1. Intrare virală

SARS-CoV-2 intră în celulele gazdă prin receptorul enzimei de conversie a angiotensinei 2 (ACE2), în același mod ca SARS-CoV [ 128 ]. Proteina spike a SARS-CoV-2 se leagă de ACE2, permițând endocitoza, care este urmată de activarea proteinei S în învelișul viral utilizând serina protează 2 transmembranară (TMPRSS2), o enzimă legată de membrană situată adiacent receptorului ACE2 [ 51 ]. În același timp, ADAM17 (dezintegrină și metaloproteinază domeniu 17) „sheddase” este activată de complexul SARS-CoV-2-ACE2 care, la rândul său, duce la eliminarea ectodomeniului ACE2. Activarea sheddasei ADAM17 poate provoca, de asemenea, scindarea TNF-α și IL-6, precum și a altor mediatori pro-inflamatori [ 128]. Trebuie remarcat faptul că afinitatea de legare ACE2 a proteinei S a SARS-CoV-2 este de 10 până la 20 de ori mai mare decât cea a SARS-CoV [ 129 ], sugerând că SARS-CoV-2 este semnificativ mai infecțioasă decât predecesorul său SARS-CoV.

Echilibrul sistemului renină-angiotensină (RAS) este vital în controlul intrării celulelor gazdă a virusurilor, precum și a comorbidităților asociate, deoarece RAS reglează tensiunea arterială. RAS este în esență un echilibru între ACE și ACE2, așa cum se ilustrează înFig. 1. Calea ECA necesită conversia angiotensinei (Ang) I la Ang II și legarea ulterioară la receptorul AT1 (AT1R), care are consecințe cumplite precum vasoconstricție, proliferare, inflamație și apoptoză [ 91 ]. Calea alternativă implică conversia Ang I și Ang II la angiotensină 1-9 și respectiv angiotensină 1-7, prin acțiunea enzimatică a ACE2. Angiotensina 1-9 este, de asemenea, convertită în angiotensina 1-7 de către ECA.

Fig. 1

Fig. 1

Căi RAS care arată echilibrul între ACE și ACE2.

ACE2 este necesar pentru intrarea virală în celulele gazdă, dar este de dorit și pentru conversia Ang I și Ang II în angiotensine 1-9 și respectiv 1-7, ducând la activarea receptorului Mas. Fig. 1arată că la rândul său, aceasta va provoca o patologie pozitivă în ceea ce privește vasodilatația și efecte antiinflamatorii, anti-oxidative și anti-fibroze [ 130 ].

Au existat discuții destul de extinse despre acțiunile contradictorii ale ACE2 în intrarea virală în celulele gazdă și reglarea acesteia a RAS, unde modularea RAS are un efect patologic pozitiv. Receptorul ACE2 este exprimat în țesuturile pulmonare și într-o serie de alte țesuturi, cum ar fi nasul, inima, endoteliul, rinichii și intestinul [ 131 , 132 ]. S-a stabilit acum că odată ce virusul se leagă de ACE2, îl elimină efectiv din acțiuni ulterioare, promovând activitatea ACE, care la rândul său duce la producerea mai multor Ang II. Înlăturarea ACE2 din acțiune face ca virusul să aibă o cursă liberă, permițându-i să prolifereze, ducând la creșterea morbidității.

S-a constatat că expresia ACE2 este mai mică la bărbați decât la femei și mai mică la adulții mai în vârstă decât la tineri, ceea ce ar putea explica incidența mai mare a deceselor la bărbații vârstnici cu COVID-19 [ 130 , 133 ]. Această categorie de pacienți are un prognostic mai prost atunci când sunt implicați și cu comorbidități precum boli cardiovasculare, diabet, hipertensiune și obezitate, toate acestea fiind stimulate de RAS [ 130 ]. Prin urmare, este important să se îmbunătățească expresia ACE2 și activitatea acestuia și, în același timp, să se asigure că intrarea virusului în celulele gazdă este inhibată. Acest lucru poate fi realizat asigurându-se că nivelurile suficiente de zinc, FA-3 PUFA, vitamina D și magneziu sunt menținute în orice moment în timpul prevenirii și tratamentului COVID-19.

Trebuie remarcat faptul că, deși nu există studii raportate privind efectul zincului asupra ACE2 pentru intrarea celulelor gazdă, zincul protejează corpul uman de intrarea virusului prin eliminarea mucociliară îmbunătățită a virusurilor, precum și prin conservarea barierelor tisulare [ 42 ]. S-a recunoscut că expresia îmbunătățită a ACE2 de către calcitriol ameliorează leziunile pulmonare acute induse de SARS-CoV-2 [ [134] , [135] , [136] ]. Calcitriolul suprimă, de asemenea, activitatea reninei și, prin urmare, reduce generarea de angiotensină II, care determină vasoconstricție pulmonară [ 134 ]. După cum sa menționat mai sus, legarea ACE2 și a intrării celulare sunt inhibate de PUFA ω-3 [ 51 , 58 ].

6.2. Sistemul imunitar

Sistemul imunitar oferă două linii de apărare: imunitatea înnăscută și adaptativă. Imunitatea înnăscută este prima linie de apărare, bazată pe bariere mucoase, monocite, macrofage, neutrofile, eozinofile și celule dendritice. Imunitatea adaptivă este procesul prin care se creează memoria imunologică la un antigen specific, dar mai lent decât imunitatea înnăscută. Celulele dendritice funcționează și ca celule care prezintă antigen, activând limfocitele B și T ale răspunsului imun adaptiv [ 53 ].

Mastocitele sunt prezente în submucoasa cavității nazale și a căilor respiratorii, unde oferă o barieră de protecție împotriva microorganismelor și pot fi activate de virus [ 29 ]. Când sunt activate, mastocitele eliberează inițial molecule inflamatorii preformate, cum ar fi histamina și proteazele, în timp ce activarea târzie activează sinteza și eliberarea membrilor familiei pro-inflamatorii IL-1, inclusiv IL-1, IL-6 și IL-33 [ 137 ] . Prin urmare, mastocitele eliberează în mod normal o gamă largă de mediatori proinflamatori. Vitamina D deviază caracteristicile de eliberare ale mastocitelor pentru a produce și excreta IL-10 fără a induce degranularea mediatorilor pro-inflamatori [ 138]. IL-10 este o citokină antiinflamatorie importantă care inhibă producția de citokine pro-inflamatorii, cum ar fi IFN-γ, IL-2, IL-3, TNF-α și GM-CSF [ 139 ].

Macrofagele sunt fundamentale pentru sistemul imunitar înnăscut, deoarece elimină agenții patogeni invadatori: recunosc agenții patogeni invadatori prin utilizarea modelelor moleculare asociate agentului patogen, care sunt la rândul lor recunoscute de TLR-uri prezente pe suprafața lor. Macrofagele fagocitează apoi agentul patogen invadator și în același timp secretă ROS și o gamă largă de citokine și chemokine pentru a recruta și activa alte tipuri de celule imune atât din sistemul imunitar înnăscut, cât și din cel adaptiv [ 53 ]. Cele mai dăunătoare citokine eliberate de macrofage atunci când sunt supraactivate sunt IL-1β, IL-6 și TNF-α [ 140 ].

Eozinofilele eliberează mediatori proinflamatori, inclusiv proteine ​​cationice degranulate, eicosanoide sintetizate și citokine [ 141 ]. Neutrofilele sunt recrutate la locul inițial al inflamației, unde au, de asemenea, un rol în îndepărtarea agenților patogeni. Neutrofilele pot interacționa, de asemenea, cu sistemul imunitar adaptiv, promovând celulele T naive pentru trecerea în celulele T helper 1 (Th1) [ 53 ].

Celulele T sunt limfocite derivate din timus. Celulele T pot fi clasificate în celule ajutătoare (Th) care reglează funcția altor celule imune și celule T citotoxice care distrug celulele infectate cu virus. Celulele Th se diferențiază în celule Th1, Th2, Th17 și Th22. Celulele Th1 secretă IFN-γ; Celulele Th2 secretă IL-4; Celulele Th17 secretă IL-17A, IL17-F, IL-21 și IL-22; iar celulele Th22 secretă IL-22. Celulele Th1 și Th17 sunt pro-inflamatorii, în timp ce celulele Th2 sunt în esență antiinflamatoare [ 53 ]. Celulele T de reglementare (Tregs) suprimă activarea altor celule imune, cum ar fi celulele Th1, celulele Th17, celulele B, macrofagele sau celulele dendritice, prin secreția de IL-10 și TGF-β [ 53 ].

Impactul oferit de diferitele celule ale sistemului imunitar care contribuie la virusurile SARS-CoV și SARS-CoV-2 este dat în tabelul 1. Se poate observa că eliberarea de citokine și chemokine este potențial imensă, ducând la potențialul de producție al furtunii de citokine.

tabelul 1

Mediatori eliberați / activați în celulele din SARS și COVID-19.

Tipul celuleiMediatori eliberați / activațiReferințe
MastociteleHistamină, triptază, NF-κB, IL-1α / β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, IL-16, IL-17, IL-18, IL-25, IL-33, TNF-α, IFN-γ, TGF-β, CCL2, CCL3, GM- CSF, VEGF, PDGF, SCF, PGE2, ROS, TLR2, c-Kit29 , [142] , [143] , [144] , [145] , [146] ]
Monocite / macrofageNF-κB, TNFα, IL-1α / β, IL-1RA, IL-6, IL-8, IL-10, IL-12, IFN-γ, TGF-β, ROS, TLR2, TLR46 , 110 , [147] , [148] , [149] , [150] ]
EozinofileIL-1α, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-10, IL-11, IL-12, IL-13, IL-16, IL- 18, IL-25, TNF-α, IFN-γ, TGF-α / β, VEGF, GM-CSF145 , [151] , [152] , [153] , [154] ]
NeutrofileIL-1α / β, IL-1RA, IL-3, IL-4, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-16, IL-17, IL-18, IL-23, Th1 / Th2, TGF-α / β, IFN-α, IFN-γ, TNF-α, G-CSG, GM-CSF, SCF, FGF, VEGF, CCL2, ROS, TLR2, TLR4[155] , [156] , [157] , [158] ]
Celulele dendriticeIL-6, IL-10, IL-12, TNF-α, CCL3, RANTES, IP-10, CCL2110 , 142 , 159 ]
Th1IFN-y, IL-1β, IL-2, IL-12, TNF-a110 , 148 ]
Th2TGF-p, IL-4, IL-5, IL-9, IL-10, IL-13110 , 148 ]
Th17IL-17A, IL-17F, IL-21, IL-22110 , 160 ]
TregIL-10, TGF-p53 , 110 ]

masa 2 prezintă celulele imunitare cheie și regulatorii care contribuie la funcția imunitară și inflamație, împreună cu efectele corective ale zincului, FA-3 PUFA, vitamina D și magneziu asupra fiecăreia dintre aceste celule imune și regulatori atunci când funcția imună și inflamația sunt supra-activate.

masa 2

Inhibarea (↓) / activarea (↑) a celulelor / regulatorilor celulelor imune.

Celula / regulatorulZincω-3 PUFA-uriVitamina DMagneziu
Mastocitele [ 161 , 162 ] [ 144 , 163 , 164 ] [ 138 , [165] , [166] , [167] ] [ 168 , 169 ]
Monocite [ 170 , 171 ] [ 172 , 173 ] [ 147 ] [ 174 , 175 ]
Macrofage [ 176 ] [ 177 , 178 ] [ 179 , 180 ] [ 175 , 181 , 182 ]
Neutrofile [ 171 , 183 , 184 ] [ 185 , 186 ] [ 187 , 188 ] [ 181 , 189 ]
Celulele dendritice [ 190 , 191 ] [ 192 , 193 ] [ 63 , 194 , 195 ] [ 196 ]
Eozinofile [ 171 , 197 , 198 ] [ 172 , 185 , 199 ] [ 200 , 201 ] [ 202 ]
Raportul Th1 / Th2 [ 203 , 204 ] [ 205 , 206 ] [ 207 ] [ 208 ]
Th17 [ 24 , [209] , [210] , [211] ] [ [212] , [213] , [214] ] [ 215 , 216 ]
Treg [ 24 , 211 , 217 , 218 ] [ 213 , [219] , [220] , [221] ] [ [222] , [223] , [224] ]
Inflammasome / caspase-1 [ 225 , 226 ] [ [227] , [228] , [229] ] [ 79 , [230] , [231] , [232] ] [ 233 , 234 ]
NF-κB [ 12 , 17 , 25 , 235 ] [ 132 , 236 , 237 ] [ 79 , [238] , [239] , [240] ] [ 121 , 174 , 241 ]

– nu indică nicio referință literară.

6.3. Furtuna de citokine

Eliberarea necontrolată de celule imune și eliberarea excesivă de citokine pro-inflamatorii a fost denumită „furtuna de citokine”. Furtuna de citokine se prezintă în mod normal ca inflamație sistemică, stres oxidativ excesiv și insuficiență multiplă a organelor [ 29 , 51 ], rezultând predominant ARDS. Cheia contracarării furtunii de citokine constă în contracararea inflamației excesive. Acest lucru poate fi abordat în mare măsură prin menținerea suficientă a nutrienților esențiali zinc, FA-3 PUFA, vitamina D și magneziu.Tabelul 3oferă citokinele proinflamatorii cheie și alți mediatori implicați într-o furtună de citokine, împreună cu efectele inhibitoare ale zincului, FA-3 PUFA, vitaminei D și magneziului. Se poate observa că acești patru nutrienți sunt pe scară largă eficienți în inhibarea cheilor mediatori proinflamatori ai furtunii de citokine.

Tabelul 3

Mediatori proinflamatori cheie într-o furtună de citokine.

MecanismeEfectul zincului asupra mediatorului [Refs]Efectul FA-3 PUFA asupra mediatorului [Refs]Efectul vitaminei D asupra mediatorului [Refs]Efectul magneziului asupra mediatorului [Refs]
TNF-a [[ 9 , 235 ]] [ 177 , [242] , [243] , [244] ] [ [245] , [246] , [247] , [248] ] [ 126 , 174 , 249 ]
IFN-γ [[ 217 , 218 , 250 ]] [ 193 , 212 , 244 ] [ 247 , 248 , [251] , [252] , [253] ] [ 208 , 249 ]
IL-1β [ 9 , 210 , 254 ] [ 177 , 227 , 244 , 255 , 256 ] [ 79 , 231 , 232 , 248 , 257 ] [ 182 , 233 , 249 , 258 , 259 ]
IL-6 [ 17 , 260 ] [ 177 , 212 , 243 , 244 , 256 ] [ 65 , 248 , 261 , 262 ] [ 121 , 126 , 174 , 182 , 263 ]
IL-12 [ 264 ] [ 172 , 265 ] [ 111 , 195 , 266 , 267 ]
IL-17 [ 209 , 210 , 268 ] [ 185 , 193 , 212 , 244 ] [ 216 , 248 , 269 , 270 ]
IL-18 [ 271 ] [ 228 ] [ 272 ]
IL-33 [ 273 ] [ 274 ] [ 275 ]
CCL2 (MCP-1) [ 9 , 171 ] [ [276] , [277] , [278] , [279] ] [ [280] , [281] , [282] ] [ 263 , 283 ]
CCL3 (MIP-1α) [ 284 ] [ 276 , 285 ] [ 216 , 286 ]
Proteina C reactivă (CRP) [ [287] , [288] , [289] ] [ [290] , [291] , [292] ] [ 93 , 293 , 294 ] [ 121 , 126 , 295 ]
GM-CSF [ 296 ] [ 297 , 298 ] [ [299] , [300] , [301] , [302] ]
NF-κB [ 12 , 25 , 226 , 235 ] [ 132 , 236 , 237 ] [ 79 , [238] , [239] , [240] ] [ 121 , 174 , 241 ]

– nu indică nicio referință literară.

 inhibă mediatorul.Mergi la:

7. Îmbătrânirea, obezitatea și bolile netransmisibile

S-a arătat că deficiențele în zinc, ω-3 PUFA, vitamina D și magneziu furnizează factori de risc semnificativi pentru boala COVID-19 severă, precum și pentru afecțiuni preexistente precum îmbătrânirea, obezitatea / diabetul, bolile cardiovasculare, bolile respiratorii cronice si cancer. Toate aceste comorbidități sunt însoțite de inflamație sistemică care are un impact probabil asupra rezultatului COVID-19 [ 29 ].

Tabelul 4enumeră celulele imune și mediatorii eliberați în COVID-19, furtuna de citokine, îmbătrânirea, obezitatea / diabetul și principalele boli netransmisibile. Se poate observa că mulți dintre mediatori, în special cei care sunt citokine pro-inflamatorii cheie, cum ar fi IL-1β, IL-6, TNF-α și IFN-γ, sunt comune COVID-19, furtuna de citokine (care în rotația face parte din COVID-19) și comorbiditățile enumerate. Intrarea înTabelul 4 pentru boli respiratorii cronice a fost considerat a fi același cu furtuna de citokine, care este principala forță din spatele creării ARDS.

Tabelul 4

Celule cheie și mediatori asociați cu COVID-19, furtuna de citokine, îmbătrânire și comorbidități.

Comorbiditate / activitateCelule / mediatori / factori de transcriereReferințe
COVID-19Mastocite, neutrofile, eozinofile, monocite, macrofage, celule dendritice, NF-κB, IL-1β, IL-1RA, IL-2, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-17, IL-18, IL-21, IL-22, IL-33, TNF-a, IFN-γ, GM-CSF, G-CSF, CCL2, CCL3, IP- 10, Th1 / Th2, PDGF, VEGF, FGF, CRP29 , 133 , 142 , 148 , 160 , 303 ]
Furtuna de citokineIL-1β, IL-6, IL-7, IL-8, IL-9, IL-12, IL-17, IL-18, IL-33, TNF-a, IFN-γ, CCL2, CCL3, FGF, G-CSF, GM-CSF, IP-10, PDGF, VEGF, CRP29 , 142 , 155 , 160 , 304 ]
ÎmbătrânireIL-1, IL-1RN, IL-2, IL-6, IL-8, IL-12, IL-13, IL-18, CRP, IFN-γ, TGF-β, TNF-α, SAA305 , 306 ]
Obezitate / diabetM2 → M1, Th2 → Th1, Treg → Th17, celule B, IL-1β, IL-6, IL-7, IL-22, IFN-γ, TNF-β, CCL2, TNF-α301 , 305 ]
Boli cardiovasculareNF-κB, IL-1β, IL-2, IL-4, IL-6, IL-17, GM-CSF, MMP-2, MMP-9, CCL2, ERK1 / 2, P38 MAPK, TNF-α, IFN -γ, HIF-1α, TLR2, TLR4302 , 309 ]
Boli respiratorii croniceIL-1β, IL-6, IL-7, IL-8, IL-9, IL-12, IL-17, IL-18, IL-33, TNF-a, IFN-γ, CCL2, CCL3, FGF, G-CSF, GM-CSF, IP-10, PDGF, VEGF29 , 142 , 155 , 160 , 304 ]
CancerNF-κB, p53, COX-2 / PGE2, TNFα, IL-1β, IL-6, IL-8, p27, PPARα, γ, GSK-3, EGFR, HER2, VEGF, Cyclin D1, c-Myc, PTEN , MDM2, HIPK2, A20, p21, TGF-β, PARP, caspaze-3,7,8,9, Bcl-2, Bcl-xL, Bax, citocrom c , ROS, iNOS, MMP9, HIF-1α, TLR4,1 ]

7.1. Îmbătrânire

Pe măsură ce corpul uman îmbătrânește, există o scădere treptată a funcționării sistemului imunitar înnăscut și adaptativ, desemnată imunosenescență, precum și o creștere a nivelului de citokine pro-inflamatorii IL-1β, IL-2, IL-6, IL -8, TNF-α și IFN-γ, precum și CRP [ 148 , 305 , 310 ]. Există, de asemenea, o scădere a expresiei ACE2, similar cu COVID-19 [ 148 ]. Îmbătrânirea produce, de asemenea, o producție excesivă de ROS, care poate iniția generarea pro-inflamatorie prin activarea factorilor de transcripție, cum ar fi NF-κB [ 148 ]. S-a constatat că funcția celulelor T devine din ce în ce mai defectă la vârstnici, scăzând funcția imună [ 20 ].

Menținerea funcționării sănătoase a celulelor are o importanță crescândă pe măsură ce îmbătrânirea progresează. Lucrând împotriva acestui lucru, deficiențele în unul sau mai multe de zinc, FA-3 PUFA, vitamina D și magneziu vor duce inevitabil la o diminuare a funcției imune și la o creștere a nivelurilor de mediatori inflamatori [ 21 , 27 , 311 ]. Deficiențele de zinc, FA-3 PUFA, vitamina D și magneziu cresc odată cu îmbătrânirea, contribuind frecvent la boli legate de vârstă, cum ar fi diabetul, bolile cardiovasculare și bolile pulmonare cronice [ 27 ].

Dieta este foarte importantă pentru aportul adecvat de zinc, FA-3 PUFA și magneziu, deoarece importanța și interesul pentru calitatea alimentelor se diminuează odată cu îmbătrânirea, precum și gradul de absorbție [ 312 ]. În plus, expunerea persoanelor în vârstă la lumina soarelui devine sever limitată, ducând la scăderea nivelului de vitamina D.

7.2. Obezitate / diabet

Obezitatea este legată de acumularea de celule pro-inflamatorii în țesutul adipos visceral, care poate duce la rezistență la insulină și la diabet zaharat [ 151 ]. Obezitatea este asociată cu inflamație de grad scăzut, care la rândul său este asociată cu diminuarea răspunsurilor imune înnăscute și adaptative. Inflamarea de grad scăzut este legată de hipoxia și disfuncția adipocitelor [ 307 ]. Există o eliberare semnificativă de citokine pro-inflamatorii (de exemplu, IL-1β, IL-6, TNF-α) care activează la rândul lor macrofage, celule T și celule B, creând o buclă de auto-regenerare [ 307 , 313 ]. Obezitatea este, de asemenea, asociată cu stres oxidativ crescut [ 314 ].

Deficitul de zinc a fost demonstrat într-o serie de studii că este asociat cu obezitatea și diabetul [ [315] , [316] , [317] ]. Zincul este esențial pentru procesarea fiziologică normală a insulinei și, prin urmare, este direct asociat cu diabetul [ 318 ].

Raportul FA-6 / ω-3 PUFA a crescut dramatic în ultimii 50 de ani și a contribuit la creșterea proporției populației obeze [ 319 ]. S-a demonstrat că această tendință poate fi inversată prin creșterea consumului de EPA și DHA [ 319 ]. S-a recomandat ca suplimentul de emulsie cu ulei de pește să fie administrat celor obezi și cu risc de a contracta COVID-19, datorită proprietăților imunomodulatoare ale EPA și DHA [ 320 ].

Obezitatea crește riscul de deficit de vitamina D, în principal datorită adipozității mai mari a individului obez. Vitamina D este liposolubilă și este depozitată în principal în țesuturile adipoase, ducând la niveluri scăzute de vitamina D în circulație [ 321 ]. Nivelurile scăzute de vitamina D au fost raportate în mod consecvent între grupurile de vârstă, etnie și geografie [ 322 , 323 ]. Metaanalizele au constatat că deficiența de vitamina D s-a corelat cu obezitatea crescută [ 321 , 324 ]. S-a demonstrat că suplimentarea cu vitamina D reduce rezistența la insulină [ 325 ], iar diabetul zaharat se corelează cu deficitul de vitamina D la adulții în vârstă [ 326 ].

Există o relație pozitivă între deficiența de magneziu și obezitate și inflamația cronică [ 327 ]. La rândul său, obezitatea este un factor de risc major pentru bolile cronice care depind de inflamația cronică, cum ar fi diabetul, bolile cardiovasculare și cancerul [ 327 ].

7.3. Boli cardiovasculare

O proporție mare de pacienți cu COVID-19 au factori de risc asociați bolilor cardiovasculare [ 328 ]. Nivelurile ridicate de inflamație asociate cu COVID-19 pot induce boli cardiovasculare [ 80 , 328 ]. Studiile efectuate pe indivizi COVID-19 cu boli cardiovasculare subiacente au prezentat un risc crescut de boală severă și mortalitate [ 329 ].

Choi și colegii săi [ 330 ] au analizat literatura despre starea zincului și bolile cardiovasculare. Au descoperit că deficitul de zinc a fost asociat cu ateroscleroza, hipertensiunea, infarctul miocardic, fibrilația atrială și insuficiența cardiacă congestivă. În mod similar, Jurowski și colegii săi [ 331 ] au revizuit literatura de specialitate, raportând că deficitul de zinc este corelat cu hipertensiunea, ateroscleroza și insuficiența cardiacă. Rapoarte suplimentare susțin faptul că deficitul de zinc este asociat cu boli cardiovasculare [ 22 , 23 ].

Efectele cardioprotectoare ale PUFA n-3 și ale metaboliților acestora sunt atribuite în principal proprietăților lor imunomodulatoare. Dovezile emergente demonstrează capacitatea PUFA-urilor ω-3 de a reduce nivelurile circulante ale chemokinelor inflamatorii, citokinelor și a metaboliților proinflamatori derivați din PUFA-urile ω-6 [ 332 , 333 ]. O serie de studii au constatat că un consum mai mare de FA-3 PUFA scade numărul deceselor legate de bolile cardiovasculare [ [334] , [335] , [336] , [337] ]. Darwesh și colegii de muncă [ 338] a prezentat un raport detaliat cu privire la efectele pozitive ale FA-3 PUFA în bolile cardiovasculare, care includea stabilizarea plăcilor aterosclerotice, reducerea incidenței formării trombului, îmbogățirea membranelor celulare și modificarea structurii plutelor lipidice și a funcției acestora în beneficiul tratamentului boli cardiovasculare.

Există o corelație puternică între obezitate și deficitul de vitamina D, precum și între obezitate și bolile cardiovasculare. Prin urmare, ar fi anticipat că ar exista un beneficiu în vitamina D suplimentară pentru pacienții obezi cu risc de boli cardiovasculare [ 339 ]. Un studiu efectuat pe 137 de pacienți brazilieni în vârstă a constatat că 65% erau deficienți de vitamina D și că exista o asociere puternică între deficiența de vitamina D și riscul de insuficiență cardiacă [ 340 ]. O serie de recenzii din literatura de specialitate au examinat asocierea dintre deficiența de vitamina D și incidența bolilor cardiovasculare, concluzionând că vitamina D scade inflamația și citokinele proinflamatorii provocând o asociere puternică cu bolile cardiovasculare [ 308 , 341342 ].

Efectele antiinflamatorii și anti-oxidative ale magneziului oferă protecție cardiovasculară [ 119 , 120 ]. Qu și colegii săi [ 127 ] au furnizat o meta-analiză care a arătat o corelație inversă între concentrațiile serice de magneziu și riscul evenimentelor cardiovasculare totale.

7.4. Boli pulmonare

Bolile pulmonare includ pneumonie, bronșită și astm. Cea mai frecventă boală pulmonară asociată cu COVID-19 este sindromul de detresă respiratorie acută (ARDS), promovat cel mai adesea de furtuna de citokine și care este adesea letală [ 51 ]. ARDS apare la aproximativ 10% dintre pacienții cu COVID-19 [ 51 ].

Meydani și colegii de muncă [ 20 ] au descoperit că persoanele în vârstă care au un deficit de zinc au șanse mai mari de a contracta pneumonie cu consecințele sale ulterioare. Rapoarte suplimentare susțin faptul că deficitul de zinc este asociat cu boli pulmonare cronice [ 21 , 23 ]. Skalny și colegii săi [ 12 ] au dedus că zincul are tendința de a atenua COVID-19 prin proprietățile sale de reducere a inflamației, îmbunătățirea clearance-ului mucociliar și promovarea imunității antivirale și antibacteriene.

Weill și colegii de muncă [ 51 ] au discutat despre proprietățile PUFA ω-3, care includ interferența intrării și replicării virale și inhibarea inflamației, ceea ce duce la îmbunătățirea rezultatului pacienților cu afecțiuni critice cu SDRA. S-a arătat într-un studiu în care s-a adăugat lichid bronhoalveolar de spălare la celulele A549 că, prin creșterea raportului ω-3: ω-6 PUFA, a existat o scădere a nivelurilor de NF-κB, COX-2 și PGE2 și o creștere în eliberarea IL-10 și PPARγ [ 343 ].

S-a observat că există o legătură puternică între sezonalitatea nivelurilor scăzute de vitamina D și apariția și prevalența gripei în timpul iernii [ 80 ]. De asemenea, s-a raportat că un procent ridicat (> 80%) dintre pacienții cu boală pulmonară obstructivă cronică au avut niveluri scăzute de vitamina D [ 344 ]. De asemenea, a fost raportată asocierea dintre niveluri mai ridicate de vitamina D și funcția pulmonară îmbunătățită [ [345] , [346] , [347] ]. Mai mult, s-a raportat că deficitul de vitamina D este asociat cu apariția bolilor respiratorii și cu mortalitatea care rezultă [ 90 , [347] , [348] , [349] ].

Rolul magneziului în funcția pulmonară a fost discutat de de Baaij și colegii săi [ 124 ], unde magneziul a fost descris ca având trei roluri: un efect puternic vasodilatator și bronhodilatator, reglarea eliberării de acetilcolină și histamină și ca anti- agent inflamator. Prin urmare, magneziul a fost sugerat ca un tratament util pentru astm și tulburări pulmonare obstructive cronice. Micke și colegii săi [ 114 ] au discutat, de asemenea, despre magneziu și funcția pulmonară în detaliu, cu o analiză similară a efectelor anticolinergice, antihistaminice și antiinflamatorii ale magneziului.

7.5. Cancer

Cancerul a fost discutat în contextul esențialității suficientă a zincului, a FA-3 PUFA și a vitaminei D [ 1 ]. Oportunitatea de a include magneziul ca o componentă esențială suplimentară în prevenirea și tratamentul cancerelor este luată aici, deoarece magneziul este esențial pentru activarea vitaminei D [ 122 , 123 ]. Magneziul, așa cum s-a discutat mai sus, este, de asemenea, activ în reglarea sistemului imunitar și controlul stresului oxidativ și al inflamației [ 119 , 120 ], care sunt predominante în dezvoltarea timpurie a cancerelor [ 350 ].Mergi la:

8. Discuție

COVID-19 și virusul său SARS-CoV-2 au oferit o oportunitate ideală pentru a reseta abordarea de prevenire și tratament a bolilor netransmisibile, în special a celor care apar predominant la vârstnici. COVID-19 s-a dovedit a fi legat de comorbidități precum senescența care apare la vârstă, obezitatea / diabetul care sunt mai severe la vârstă și bolile cardiovasculare și bolile pulmonare cronice care sunt mai răspândite la vârstă, precum și cancerele. Prin urmare, este oportun să se examineze cu atenție prevenirea și tratamentul COVID-19 și acele boli, cu o atenție deosebită la acele caracteristici și caracteristici care sunt comune acestor boli. Cele mai remarcabile caracteristici comune sunt inflamația și hiperactivitatea sistemului imunitar înnăscut și adaptativ.Controlul inflamației și al sistemului imunitar depinde în mod fundamental de suficiența nutrienților esențiali zinc, FA-3 PUFA, vitamina D și magneziu.

Această lucrare a fost îndreptată spre o apreciere a beneficiilor de a avea suficiența de zinc, FA-3 PUFA, vitamina D și magneziu. Aceste patru componente sunt esențiale, deoarece sunt naturale pentru funcționarea normală a celulelor și a multor alte componente ale corpului uman. Sunt extrem de sigure atunci când sunt suplimentate într-un mod controlat. Controlul la vârstnici (de exemplu, 65 de ani și peste) poate fi menținut prin analize anuale ale nivelului lor seric. Acest lucru poate fi realizat cu sprijinul guvernului, precum și prin furnizarea de suplimente de către guvern, acolo unde este necesar. Costul acestui serviciu pentru cei peste 65 de ani ar fi mic în comparație cu economiile potențiale în spitalizare și costurile de îngrijire critică. Ca exemplu,o estimare germană a efectului suplimentării numai a vitaminei D asupra economiilor de cancer numai în Germania a arătat o reducere a costurilor de aproximativ 254 milioane EUR pe an, cu o prevenire de aproape 30.000 de decese cauzate de cancer pe an [351 ].

Zincul, FA-3 PUFA-urile, vitamina D și magneziul sunt pleiotrope întrucât permit și, de fapt, stimulează funcționarea granulocitelor, cum ar fi mastocitele, neutrofilele și eozinofilele, precum și monocitele / macrofagele, celulele dendritice, celulele T și celulele B în condiții normale și atunci când există invazii minore de agenți patogeni, cum ar fi infecții virale și bacteriene minore. În schimb, zincul, PUFA ω-3, vitamina D și magneziul acționează pentru a suprima hiperinflamarea și perturbările majore ale sistemului imunitar care apar atunci când există o invazie semnificativă de agenți patogeni virali sau bacterieni, cum ar fi SARS-CoV-2 sau netransmisibil. boli precum diabetul, bolile cardiovasculare sau bolile pulmonare cronice. În aceste situații, zincul, FA-3 PUFA-urile, vitamina D și magneziul au capacitatea de a suprima inflamația excesivă și dereglarea sistemului imunitar.Acești nutrienți sunt, prin urmare, esențiali în toate aspectele; atunci când sunt prezenți în cantități suficiente, sunt direcționați spre asigurarea unei sănătăți bune pentru oameni în orice moment și pentru toate vârstele. Acest lucru nu este în mod normal cazul medicamentelor non-naturale care sunt prescrise pentru tratamentul anumitor afecțiuni patologice.

Vaccinurile sunt rareori 100% în prevenirea transmiterii și prevenirea îmbolnăvirii de către oameni a bolii respective; există potențiale probleme cu mutațiile și diminuarea eficacității acestora. Este de remarcat faptul că vaccinurile își îndeplinesc doar funcția prin sistemul imunitar adaptiv, în timp ce zincul, FA-3 PUFA, vitamina D și magneziu afectează atât sistemul imunitar înnăscut, cât și cel adaptiv. Prin urmare, este de dorit suplimentarea celor patru nutrienți în tratamentul COVID-19, mai ales dacă această suplimentare este benefică în prevenirea sau tratarea bolilor netransmisibile sau reducerea efectelor adverse ale îmbătrânirii.Mergi la:

Finanțarea

Această cercetare nu a primit nicio subvenție specifică de la agențiile de finanțare din sectoarele public, comercial sau non-profit.Mergi la:

Declarație de interes concurent

Autorul declară că nu are interese financiare concurente cunoscute sau relații personale care ar fi putut părea să influențeze munca raportată în această lucrare.Mergi la:

Referințe

1. Story MJ Zinc, acids-3 acizi grași polinesaturați și vitamina D: o combinație esențială pentru prevenirea și tratamentul cancerelor. Biochimie. 2021; 181 : 100–1222. [ PubMed ] [ Google Scholar ]2. Raport de stare globală privind bolile netransmisibile ”. CARE; 2010. https://www.who.int/nmh/publications/ncd_report_full_en.pdf Google Scholar ]3. Pecora F., Persico F., Argentiero A., Neglia C., Esposito S. Rolul micronutrienților în sprijinul răspunsului imun împotriva infecțiilor virale. Nutrienți. 2020; 12 (10) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]4. Szabó Z., Marosvölgyi T., É Szabó, Bai P., Figler M., Verzár Z. Efectul potențial benefic al suplimentării EPA și DHA gestionând furtuna de citokine în boala coronavirusului. Față. Fiziol. 2020; 11 : 752. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]5. Calder PC, Carr AC, Gombart AF, Eggersdorfer M. Starea nutrițională optimă pentru un sistem imunitar care funcționează bine este un factor important de protecție împotriva infecțiilor virale. Nutrienți. 2020; 12 (4): 1181. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]6. Iddir M., Brito A., Dingeo G., Fernandez Del Campo SS, Samouda H., La Frano MR Întărirea sistemului imunitar și reducerea inflamației și a stresului oxidativ prin dietă și nutriție: considerații în timpul crizei COVID-19. Nutrienți. 2020; 12 (6): 1562. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]7. Mammadova-Bach E., Braun A. Homeostazia zincului în bolile legate de trombocite. Int. J. Mol. Știință. 2019; 20 (21): 5258. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]8. Prasad AS Zincul în sănătatea umană: efectul zincului asupra celulelor imune. Mol. Med. 2008; 14 (5-6): 353-357. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]9. Bao B., Prasad AS, Beck FW, Fitzgerald JT, Snell D., Bao GW Zincul scade proteina C reactivă, peroxidarea lipidelor și citokinele inflamatorii la subiecții vârstnici: o implicație potențială a zincului ca agent ateroprotector. A.m. J. Clin. Nutr. 2010; 91 (6): 1634–1641. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]10. Prasad AS, Beck FW, Bao B., Fitzgerald JT, Snell DC, Steinberg JD Suplimentarea cu zinc scade incidența infecțiilor la vârstnici: efectul zincului asupra generării de citokine și stres oxidativ. A.m. J. Clin. Nutr. 2007; 85 (3): 837–844. [ PubMed ] [ Google Scholar ]11. Gao H., Dai W., Zhao L., Min J., Wang F. Rolul homeostaziei zincului și zincului în funcția macrofagelor. J Immunol Res. 2018 2018. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]12. Skalny AV, Rink L., Ajsuvakova OP, Aschner M., Gritsenko VA, Alekseenko SI Zinc și infecții ale tractului respirator: perspective pentru COVID-19 (Review) Int. J. Mol. Med. 2020; 46 (1): 17-26. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]13. Kloubert V., Rink L. Zincul ca micronutrienți și rolul său preventiv de deteriorare oxidativă în celule. Food Funct. 2015; 6 (10): 3195-3204. [ PubMed ] [ Google Scholar ]14. Prasad AS Descoperirea deficitului de zinc uman: impactul acestuia asupra sănătății și bolilor umane. Adv Nutr. 2013; 4 (2): 176-190. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]15. Shankar AH, Prasad AS Zincul și funcția imună: baza biologică a rezistenței modificate la infecție. A.m. J. Clin. Nutr. 1998; 68 (2 Supliment): 447S – 463S. [ PubMed ] [ Google Scholar ]16. Haase H., Rink L. Sistemul imunitar și impactul zincului în timpul îmbătrânirii. Imun. Îmbătrânire. 2009; 6 : 9. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]17. Primar-Ibarguren A., Busca-Arenzana C., Robles-Marhuenda Á O ipoteză pentru posibilul rol al zincului în căile imunologice legate de infecția COVID-19. Față. Immunol. 2020; 11 : 1736. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]18. Haase H., Rink L. Semnalele de zinc și funcția imună. Biofactori. 2014; 40 (1): 27-40. [ PubMed ] [ Google Scholar ]19. Gombart AF, Pierre A., Maggini S. O revizuire a micronutrienților și a sistemului imunitar care funcționează în armonie pentru a reduce riscul de infecție. Nutrienți. 2020; 12 (1): 236. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]20. Meydani SN, Barnett JB, Dallal GE, Fine BC, Jacques PF, Leka LS Serum zinc și pneumonie la vârstnici la azil. A.m. J. Clin. Nutr. 2007; 86 (4): 1167–1173. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]21. Barnett JB, Hamer DH, Meydani SN Starea scăzută a zincului: un nou factor de risc pentru pneumonia la vârstnici? Nutr. Rev. 2010; 68 (1): 30-37. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]22. Braun LA, Ou R., Kure C., Trang A., Rosenfeldt F. Prevalența deficitului de zinc la pacienții cu chirurgie cardiacă. Heart Lung Circ. 2018; 27 (6): 760-762. [ PubMed ] [ Google Scholar ]23. Derwand R., Scholz M. Suplimentarea cu zinc crește eficacitatea clinică a clorochinei / hidroxiclorochinei pentru a câștiga bătălia de astăzi împotriva COVID-19? Med. Ipoteze. 2020; 142 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]24. George MM, Subramanian Vignesh K., Landero Figueroa JA, Caruso JA, Deepe GS, Jr. J. Immunol. 2016; 197 (5): 1864–1876. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]25. Prasad AS, Bao B., Beck FW, Sarkar FH Citokine inflamatorii suprimate de zinc prin inducerea inhibării mediată de A20 a factorului nuclear-κB. Nutriție. 2011; 27 (7-8): 816-823. [ PubMed ] [ Google Scholar ]26. McGonagle D., Sharif K., O’Regan A., Bridgewood C. Rolul citokinelor incluzând interleukina-6 în pneumonia indusă de COVID-19 și boala asemănătoare sindromului de activare a macrofagelor. Autoimun. Rev. 2020; 19 (6) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]27. Alexander J., Tinkov A., Strand TA, Alehagen U., Skalny A., Aaseth J. Intervenții nutriționale timpurii cu zinc, seleniu și vitamina D pentru creșterea rezistenței antivirale împotriva COVID-19 progresiv. Nutrienți. 2020; 12 (8): 2358. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]28. Arentz S., Yang G., Goldenberg J., Beardsley J., Myers SP, Mertz D. Zinc pentru prevenirea și tratamentul SARS-CoV-2 și a altor infecții respiratorii acute virale: o analiză rapidă. Adv Integr Med. 2020; 7 (4): 252–260. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]29. Zabetakis I., Lordan R., Norton C., Tsoupras A. COVID-19: legătura de inflamație și rolul nutriției în atenuarea potențială. Nutrienți. 2020; 12 (5): 1466. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]30. Stefanidou M., Maravelias C., Dona A., Spiliopoulou C. Zinc: un oligoelement multifuncțional. Arc. Toxicol. 2006; 80 (1): 1-9. [ PubMed ] [ Google Scholar ]31. te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ Zn (2+) inhibă activitatea ARN polimerazei coronavirus și arterivirus in vitro, iar ionoforii de zinc blochează replicarea acestor virusuri în cultura celulară. PLoS Pathog. 2010; 6 (11) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]32. Rajaiah R., Abhilasha KV, Shekar MA, Vogel SN, Vishwanath BS Evaluarea mecanismelor de acțiune a medicamentelor refolosite pentru tratamentul COVID-19. Celula. Immunol. 2020; 358 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]33. Doboszewska U., Wlaź P., Nowak G., Młyniec K. Țintirea metaloenzimelor zincului în boala coronavirusului 2019. Br. J. Pharmacol. 2020; 177 (21): 4887–4898. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]34. Dabbagh-Bazarbachi H., Clergeaud G., Quesada IM, Ortiz M., O’Sullivan CK, Fernández-Larrea JB Activitatea ionoforă de zinc a quercetinei și epigalocatechin-galatului: de la celulele Hepa 1-6 la un model de lipozomi. J. Agric. Food Chem. 2014; 62 (32): 8085–8093. [ PubMed ] [ Google Scholar ]35. Brooks HA, Gardner D., Poyser JP, King TJ Structura și stereochimia absolută a zincoforinei (antibioticul M144255): un ionofor al acidului carboxilic monobazic având o specificitate remarcabilă pentru cationii divalenți. J. Antibiot. (Tokyo) 1984; 37 (11): 1501-1504. [ PubMed ] [ Google Scholar ]36. Rizzo E. Ivermectina, proprietăți antivirale și COVID-19: un posibil nou mecanism de acțiune. Arh. Naunyn-Schmiedeberg. Farmacol. 2020; 393 (7): 1153-1156. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]37. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/home38. Pal A., Squitti R., Picozza M., Pawar A., ​​Rongioletti M., Dutta AK Zinc și COVID-19: baza studiilor clinice actuale. Biol Trace Elem Res Înainte de tipărire. 2021 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]39. Kumar A., ​​Kubota Y., Chernov M., Kasuya H. Rolul potențial al suplimentării cu zinc în profilaxia și tratamentul COVID-19. Med. Ipoteze. 2020; 144 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]40. Wessels I., Rolles B., Rink L. Impactul potențial al suplimentării cu zinc asupra patogeniei COVID-19. Față. Immunol. 2020; 11 : 1712. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]41. Roscioli E., Jersmann HP, Lester S., Badiei A., Fon A., Zalewski P. Deficitul de zinc ca codeterminant pentru disfuncția barierei epiteliale a căilor respiratorii într-un model ex vivo de BPOC. Int. J. Chronic Obstr. Pulm. Dis. 2017; 12 : 3503–3510. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]42. Wessels I., Pupke JT, von Trotha KT, Gombert A., Himmelsbach A., Fischer HJ Suplimentarea cu zinc ameliorează leziunile pulmonare prin reducerea recrutării și activității neutrofilelor. Torace. 2020; 75 (3): 253–261. [ PubMed ] [ Google Scholar ]43. Finzi E. Tratamentul SARS-CoV-2 cu doze mari de săruri de zinc pe cale orală: un raport pe patru pacienți. Int. J. Infectează. Dis. 2020; 99 : 307–309. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]44. Carlucci PM, Ahuja T., Petrilli C., Rajagopalan H., Jones S., Rahimian J. Sulfatul de zinc în combinație cu un ionofor de zinc poate îmbunătăți rezultatele la pacienții spitalizați cu COVID-19. J. Med. Microbiol. 2020; 69 (10): 1228–1234. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]45. Jothimani D., Kailasam E., Danielraj S., Nallathambi B., Ramachandran H., Sekar P. COVID-19: rezultate slabe la pacienții cu deficit de zinc. Int. J. Infectează. Dis. 2020; 100 : 343–349. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]46. Razzaque MS COVID-19 pandemie: menținerea unui echilibru optim de zinc poate spori rezistența gazdei? Tohoku J. Exp. Med. 2020; 251 (3): 175–181. [ PubMed ] [ Google Scholar ]47. Simopoulos AP Importanța raportului dintre acizii grași esențiali omega-6 / omega-3. Biomed. Farmacoter. 2002; 56 (8): 365–379. [ PubMed ] [ Google Scholar ]48. Simopoulos AP Importanța raportului de acizi grași omega-6 / omega-3 în bolile cardiovasculare și alte boli cronice. Exp. Biol. Med. 2008; 233 (6): 674-688. [ PubMed ] [ Google Scholar ]49. Blondeau N., Lipsky RH, Bourourou M., Duncan MW, Gorelick PB, Marini AM Acid alfa-linolenic: un acid gras omega-3 cu proprietăți neuroprotectoare, gata de utilizare în clinica AVC? BioMed Res. Int. 2015 2015. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]50. Das ONU Poate lipidele bioactive să inactiveze coronavirusul (COVID-19)? Arc. Med. Rez. 2020; 51 (3): 282–286. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]51. Weill P., Plissonneau C., Legrand P., Rioux V., Thibault R. Poate suplimentarea dietetică cu acizi grași omega-3 poate reduce complicațiile severe la pacienții cu Covid-19? Biochimie. 2020; 179 : 275–280. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]52. Schiessel DL, Yamazaki RK, Kryczyk M., Coelho I., Yamaguchi AA, Suplimentarea cu acizi grași α-linolenici Pequito DC scade creșterea tumorii și parametrii cașexiei la șobolanii cu tumori Walker 256. Nutr. Canc. 2015; 67 (5): 839-846. [ PubMed ] [ Google Scholar ]53. Gutiérrez S., Svahn SL, Johansson ME Efectele acizilor grași omega-3 asupra celulelor imune. Int. J. Mol. Știință. 2019; 20 (20): 5028. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]54. Serhan CN, Chiang N., Van Dyke TE Rezolvarea inflamației: mediatori duali lipidici antiinflamatori și pro-rezoluție. Nat. Pr. Immunol. 2008; 8 (5): 349-361. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]55. Rius B., López-Vicario C., González-Périz A., Morán-Salvador E., García-Alonso V., Clária J. Rezoluția inflamației în boala hepatică indusă de obezitate. Față. Immunol. 2012; 3 : 257. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]56. Lu Y., Liu DX, Tam JP Plutele lipidice sunt implicate în intrarea SARS-CoV în celulele Vero E6. Biochimie. Biofizi. Rez. Comun. 2008; 369 (2): 344-349. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]57. Li GM, Li YG, Yamate M., Li SM, Ikuta K. Plutele lipidice joacă un rol important în stadiul incipient al ciclului de viață al sindromului respirator acut sever-coronavirus. Microb. Infecta. 2007; 9 (1): 96–102. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]58. Goc A., Niedzwiecki A., Rath M. Research Square Înainte de tipărire; 2021. Acizii grași polinesaturați ω-3 inhibă legarea și intrarea celulară a legăturii SARS-CoV-2 controlate ACE2. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]59. Fritsche K. Acizii grași ca modulatori ai răspunsului imun. Annu. Pr. Nutr. 2006; 26 : 45–73. [ PubMed ] [ Google Scholar ]60. Vedin I., Cederholm T., Freund Levi Y., Basun H., Garlind A. Efectele suplimentării cu acid gras n-3 bogate în acid docosahexaenoic asupra eliberării de citokine din leucocitele mononucleare din sânge: studiul OmegAD. A.m. J. Clin. Nutr. 2008; 87 (6): 1616–1622. [ PubMed ] [ Google Scholar ]61. Kiecolt-Glaser JK, Belury MA, Andridge R., Malarkey WB, Hwang BS, Glaser R. Suplimentarea cu omega-3 scade inflamația la adulții sănătoși de vârstă mijlocie și adulți mai în vârstă: un studiu controlat randomizat. Brain Behav. Imun. 2012; 26 (6): 988-995. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]62. Chiang KC, Chen TC Vitamina D pentru prevenirea și tratamentul cancerului pancreatic. Lumea J. Gastroenterol. 2009; 15 (27): 3349-3354. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]63. Barragan M., Good M., Kolls JK Regulamentul funcției celulelor dendritice de către vitamina D. Nutrienți. 2015; 7 (9): 8127–8151. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]64. Sassi F., Tamone C., D’Amelio P. Vitamina D: nutrient, hormon și imunomodulator. Nutrienți. 2018; 10 (11): 1656. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]65. Xu Y., DJ Baylink, Chen CS, Reeves ME, Xiao J., Lacy C. Importanța metabolismului vitaminei D ca potențial tratament profilactic, imunoreglator și neuroprotector pentru COVID-19. J. Transl. Med. 2020; 18 (1): 322. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]66. Ohadian Moghadam S. O revizuire a opțiunilor terapeutice potențiale disponibile în prezent pentru COVID-19. Int. J. Gen. Med. 2020; 13 : 443–467. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]67. Munshi R., Hussein MH, Toraih EA, Elshazli RM, Jardak C., Sultana N. Insuficiența vitaminei D ca potențial vinovat la pacienții critici cu COVID-19. J Med Virol Înainte de tipărire. 2020 [ Google Scholar ]68. Chaabouni M., Feki W., Chaabouni K., Kammoun S. Suplimentarea cu vitamina D pentru a preveni COVID-19 la pacienții cu BPOC: o perspectivă de cercetare. Adv Respir Med. 2020; 88 (4): 364-365. [ PubMed ] [ Google Scholar ]69. Grant WB, Lahore H., McDonnell SL, Baggerly CA, French CB, Aliano JL Dovezi că suplimentarea cu vitamina D ar putea reduce riscul de gripă și infecții și decese COVID-19. Nutrienți. 2020; 12 (4): 988. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]70. Rhodes JM, Subramanian S., Laird E., Kenny RA Editorial: mortalitatea scăzută a populației din COVID-19 în țările situate la sud de latitudine 35 grade nord susține vitamina D ca factor determinant al severității. Aliment. Farmacol. Ther. 2020; 51 (12): 1434–1437. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]71. Mandal AKJ, Baktash V., Hosack T., statutul Missouris CG Vitamina D și COVID-19 la adulții în vârstă. Clinica de îmbătrânire. Exp. Rez. 2020; 32 (11): 2425–2426. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]72. Dixon KM, Tongkao-On W., Sequeira VB, Carter SE, Song EJ, Rybchyn MS, Gordon-Thomson C., Mason RS Vitamina D și moartea prin soare. Int. J. Mol. Știință. 2013; 14 (1): 1964–1977. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]73. Garland CF, Garland FC, Gorham ED Rolul vitaminei D în prevenirea cancerului. A.m. J. Publ. Sănătate. 2006; 96 (2): 252–261. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]74. Macdonald HM Contribuții ale soarelui și ale dietei la starea de vitamina D. Calcif. Țesut Int. 2013; 92 (2): 163–176. [ PubMed ] [ Google Scholar ]75. Dobnig H. O revizuire a consecințelor pandemiei de deficit de vitamina D asupra sănătății. J. Neurol. Știință. 2011; 311 (1-2): 15-18. [ PubMed ] [ Google Scholar ]76. Hoel DG, Berwick M., de Gruijl FR, Holick MF Riscurile și beneficiile expunerii la soare 2016. Dermatoendocrinol. 2016; 8 (1) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]77. van der Rhee H., de Vries E., Coomans C., van de Velde P., Coebergh JW Pentru bine sau pentru rău? O revizuire a efectelor pozitive și negative ale expunerii la soare. Canc. Res Front. 2016; 2 (2): 156–183. [ Google Scholar ]78. Green RJ, Samy G., Miqdady MS, El-Hodhod M., Akinyinka OO, Saleh G. Deficiența și insuficiența vitaminei D în Africa și Orientul Mijlociu, în ciuda zilelor însorite pe tot parcursul anului. S. Afr. Med. J. 2015; 105 (7): 603-605. [ PubMed ] [ Google Scholar ]79. Li H., Zhong X., Li W., Wang Q. Efectele 1,25-dihidroxivitaminei D3 asupra periodontitei experimentale și a căii inflammasome AhR / NF-κB / NLRP3 într-un model de șoarece. J. Appl. Știință orală. 2019; 27 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]80. Bilezikian JP, Bikle D., Hewison M., Lazaretti-Castro M., Formenti AM, Gupta A. Mecanisme în endocrinologie: vitamina D și COVID-19. Euro. J. Endocrinol. 2020; 183 (5): R133 – R147. [ PubMed ] [ Google Scholar ]81. Simonson W. Vitamina D și coronavirus. Geriatr. Nursuri. 2020; 41 (4): 496–497. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]82. Al-Ani M., Elemam NM, Hundt JE, Maghazachi AA Medicamentele pentru scleroza multiplă activează celulele kKiller naturale: protejează împotriva infecției COVID-19? Infecta. Rezistă la droguri. 2020; 13 : 3243–3254. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]83. Adams KK, Baker WL, Sobieraj DM Myth busters: suplimente alimentare și COVID-19. Ann. Farmacoter. 2020; 54 (8): 820-826. [ PubMed ] [ Google Scholar ]84. Ali N. Rolul vitaminei D în prevenirea infecției, progresiei și severității COVID-19. J Infectați sănătatea publică. 2020; 13 (10): 1373–1380. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]85. Kara M., Ekiz T., Ricci V., Kara Ö., Chang KV, Özçakar L. Strabismus științific sau două pandemii conexe: boala coronavirusului și deficitul de vitamina D. Fr. J. Nutr. 2020; 124 (7): 736-741. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]86. Allegra A., Tonacci A., Pioggia G., Musolino C., Gangemi S. Deficitul de vitamină ca factor de risc pentru infecția cu SARS-CoV-2: corelație cu susceptibilitatea și prognosticul. Euro. Pr. Med. Farmacol. Știință. 2020; 24 (18): 9721–9738. [ PubMed ] [ Google Scholar ]87. Ilie PC, Stefanescu S., Smith L. Rolul vitaminei D în prevenirea bolii coronavirus 2019 infecție și mortalitate. Clinica de îmbătrânire. Exp. Rez. 2020; 32 (7): 1195–1198. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]88. Annweiler C., Cao Z., Sabatier JM Punct de vedere: pacienții cu COVID-19 ar trebui suplimentați cu vitamina D? Maruritas. 2020; 140 : 24-26. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]89. Baktash V., Hosack T., Patel N., Shah S., Kandiah P., Van Den Abbeele K. Starea și rezultatele vitaminei D pentru pacienții în vârstă spitalizați cu COVID-19. Postgrad Med J Înaintea tipăririi. 2021 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]90. Carpagnano GE, Di Lecce V., Quaranta VN, Zito A., Buonamico E., Capozza E. Deficiența vitaminei D ca predictor al prognosticului slab la pacienții cu insuficiență respiratorie acută datorată COVID-19. J. Endocrinol. Investi. 2020; 9 : 1–7. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]91. Hadizadeh F. Suplimentarea cu vitamina D în pandemia COVID-19? Nutr. Rev. 2021; 79 (2): 200–208. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]92. Ratele de pozitivitate Kaufman HW, Niles JK, Kroll MH, Bi C., Holick MF SARS-CoV-2 asociate cu nivelurile circulante de 25-hidroxivitamină D. Plus unu. 2020; 15 (9) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]93. Maghbooli Z., Sahraian MA, Ebrahimi M., Pazoki M., Kafan S., Tabriz HM Vitamina D, o cantitate serică de 25-hidroxivitamină D cu cel puțin 30 ng / ml a redus riscul de rezultate clinice adverse la pacienții cu COVID- 19 infecție. Plus unu. 2020; 15 (9) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]94. Merzon E., Tworowski D., Gorohovski A., Vinker S., Golan Cohen A., Green I. Nivelul scăzut al vitaminei D din plasma 25 (OH) este asociat cu un risc crescut de infecție COVID-19: o populație israeliană- studiu bazat. FEBS J. 2020; 287 (17): 3693-3702. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]95. Moozhipurath RK, Kraft L., Skiera B. Dovezi ale rolului protector al radiației ultraviolete-B (UVB) în reducerea deceselor prin COVID-19. Știință. Rep. 2020; 10 (1) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]96. Weir EK, Thenappan T., Bhargava M., Chen Y. Deficitul de vitamina D crește severitatea COVID-19? Clin. Med. 2020; 20 (4): e107 – e108. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]97. Zemb P., Bergman P., Camargo CA, Jr., Cavalier E., Cormier C., Courbebaisse M. Deficitul de vitamina D și pandemia COVID-19. J Glob Antimicrob Resist. 2020; 22 : 133–134. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]98. Entrenas Castillo M., Entrenas Costa LM, Vaquero Barrios JM, Alcalá Díaz JF, López Miranda J., Bouillon R. Efectul tratamentului cu calcifediol și cea mai bună terapie disponibilă versus cea mai bună terapie disponibilă privind admiterea în unități de terapie intensivă și mortalitatea în rândul pacienților spitalizați pentru COVID-19: un studiu clinic randomizat pilot. J. Steroid Biochem. Mol. Biol. 2020; 203 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]99. Tarazona-Santabalbina FJ, Cuadra L., Cancio JM, Carbonell FR, Garrote JMP, Casas-Herrero Á., Martínez-Velilla N., Serra-Rexach JA, Formiga F. Rev Esp Geriatr Gerontol Înainte de tipărire; 2021. Suplimentarea cu vitamina D pentru prevenirea și tratamentul COVID-19: o declarație de poziție a Societății spaniole de geriatrie și gerontologie. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]100. Lau FH, Majumder R., Torabi R., Saeg F., Hoffman R., Cirillo JD MedRxiv preprint Ahead of print; 2021. Insuficiența de vitamina D este prevalentă în COVID-19 sever. [ Google Scholar ]101. de Haan K., Groeneveld AB, de Geus HR, Egal M., Struijs A. Deficitul de vitamina D ca factor de risc pentru infecție, sepsis și mortalitate la bolnavii critici: revizuire sistematică și meta-analiză. Crit. Îngrijire. 2014; 18 (6): 660. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]102. Claro da Silva T., Hiller C., Gai Z., Kullak-Ublick GA Vitamina D3 transactivează transportorul de zinc și mangan SLC30A10 prin receptorul pentru vitamina D. J. Steroid Biochem. Mol. Biol. 2016; 163 : 77–87. [ PubMed ] [ Google Scholar ]103. McDonnell SL, Baggerly CA, French CB, Baggerly LL, Garland CF, Gorham ED Risc de cancer mamar semnificativ mai mic cu concentrații serice de 25-hidroxivitamină D ≥60 vs <20 ng / ml (150 vs 50 nmol / L): analiză combinată a două studii randomizate și a unei cohorte prospective. Plus unu. 2018; 13 (6) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]104. McCullough ML, Zoltick ES, Weinstein SJ, Fedirko V., Wang M., Cook NR Circulating vitamina D and cancer colorectal risk: a international pooling project of 17 cohorts. J. Natl. Cancer Inst. 2019; 111 (2): 158–169. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]105. Chandler PD, Chen WY, Ajala ON, Hazra A., Cook N., Bubes V. Efectul suplimentelor de vitamina D3 asupra dezvoltării cancerului avansat: o analiză secundară a studiului clinic randomizat VITAL. JAMA Netw Open. 2020; 3 (11) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]106. Moukayed M., Grant WB Rolurile UVB și ale vitaminei D în reducerea riscului de incidență și mortalitate prin cancer: o revizuire a epidemiologiei, a studiilor clinice și a mecanismelor. Pr. Endocr. Metab. Tulburare. 2017; 18 (2): 167–182. [ PubMed ] [ Google Scholar ]107. Ma Y., Johnson CS, Trump DL Înțelegeri mecaniciste ale efectelor anticanceroase ale vitaminei D. Vitam. Horm. 2016; 100 : 395–431. [ PubMed ] [ Google Scholar ]108. Abu El Maaty MA, Wölfl S. Efecte de 1,25 (OH) ₂D₃ asupra celulelor canceroase și a potențialelor aplicații în combinație cu agenți anti-cancer stabiliți și putativi. Nutrienți. 2017; 9 (1): 87. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]109. D’Avolio A., Avataneo V., Manca A., Cusato J., De Nicolò A., Lucchini R. Concentrațiile de 25-hidroxivitamină D sunt mai mici la pacienții cu PCR pozitivă pentru SARS-CoV-2. Nutrienți. 2020; 12 (5): 1359. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]110. Charoenngam N., Efectele imunologice ale Holick MF ale vitaminei D asupra sănătății și bolilor umane. Nutrienți. 2020; 12 (7) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]111. Kumar R., Rathi H., Haq A., Wimalawansa SJ, Sharma A. Roluri putative ale vitaminei D în modularea răspunsului imun și a imunopatologiei asociate cu COVID-19. Virus Res. 2021; 292 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]112. Dominguez LJ, Veronese N., Guerrero-Romero F., Barbagallo M. Magneziu în bolile infecțioase la persoanele în vârstă. Nutrienți. 2021; 13 (1): 180. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]113. Iotti S., Wolf F., Mazur A., ​​Maier JA Pandemia COVID-19: există un rol pentru magneziu? Ipoteze și perspective. Magnes. Rez. 2020; 33 (2): 21-27. [ PubMed ] [ Google Scholar ]114. Micke O., Vormann J., Kisters K. Magnesium și COVID-19 – câteva comentarii suplimentare – un comentariu la Wallace TC. Combaterea COVID-19 și construirea rezistenței imune: un rol potențial pentru nutriția cu magneziu? J Am Coll Nutr Înainte de tipărire. 2021 [ PubMed ] [ Google Scholar ]115. Alamdari NM, Afaghi S., Rahimi FS, Tarki FE, Tavana S., Zali A. Factori de risc de mortalitate în rândul pacienților spitalizați COVID-19 într-un centru de referință major din Iran. Tohoku J. Exp. Med. 2020; 252 (1): 73-84. [ PubMed ] [ Google Scholar ]116. Quilliot D., Bonsack O., Jaussaud R., Mazur A. Dismagnezemie la pacienții din cohorta Covid-19: prevalență și factori asociați. Magnes. Rez. 2020; 33 (4): 114–122. [ PubMed ] [ Google Scholar ]117. Zeng HL, Yang Q., Yuan P., Wang X., Cheng L. Asociații de metale / metaloizi esențiali și toxici în sângele integral, atât cu severitatea bolii, cât și cu mortalitatea la pacienții cu COVID-19. Faseb. J. 2021; 35 (3) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]118. Costello RB, Nielsen F. Interpretarea stării magneziului pentru îmbunătățirea îngrijirii clinice: indicatori cheie. Curr. Opin. Clin. Nutr. Metab. Îngrijire. 2017; 20 (6): 504-511. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]119. Nielsen FH Deficitul de magneziu și inflamația crescută: perspective actuale. J. Inflamm. Rez. 2018; 11 : 25–34. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]120. Tang CF, Ding H., Jiao RQ, Wu XX, Kong LD Posibilitatea suplimentării cu magneziu pentru tratament de susținere la pacienții cu COVID-19. Euro. J. Pharmacol. 2020; 886 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]121. Wallace TC Combaterea COVID-19 și construirea rezistenței imune: un rol potențial pentru nutriția cu magneziu? J. Am. Col. Nutr. 2020; 39 (8): 685-693. [ PubMed ] [ Google Scholar ]122. DiNicolantonio JJ, O’Keefe JH Deficitul de magneziu și vitamina D ca cauză potențială a disfuncției imune, a furtunii de citokine și a coagulării intravasculare diseminate la pacienții cu covid-19. Mo. Med. 2021; 118 (1): 68–73. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]123. Dai Q., ​​Zhu X., Manson JE, Song Y., Li X., Franke AA Starea magneziului și suplimentarea influențează starea și metabolismul vitaminei D: rezultatele unui studiu randomizat. A.m. J. Clin. Nutr. 2018; 108 (6): 1249–1258. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]124. de Baaij JH, Hoenderop JG, Bindels RJ Magneziu la om: implicații pentru sănătate și boală. Fiziol. Rev. 2015; 95 (1): 1-46. [ PubMed ] [ Google Scholar ]125. Maier JA, Castiglioni S., Locatelli L., Zocchi M., Mazur A. Magneziu și inflamație: avansuri și perspective. Semin Cell Dev Biol Înainte de tipărire. 2020 [ Google Scholar ]126. Chacko SA, Song Y., Nathan L., Tinker L., de Boer IH, Tylavsky F. Relațiile aportului de magneziu din dietă la biomarkerii inflamației și disfuncției endoteliale într-o cohortă diversă din punct de vedere etnic de femei aflate în postmenopauză. Îngrijirea diabetului. 2010; 33 (2): 304–310. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]127. Qu X., Jin F., Hao Y., Li H., Tang T., Wang H. Magneziu și riscul de evenimente cardiovasculare: o meta-analiză a studiilor prospective de cohortă. Plus unu. 2013; 8 (3) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]128. Zipeto D., Palmeira JDF, Argañaraz GA, Argañaraz ER ACE2 / ADAM17 / TMPRSS2 interacțiunea poate fi principalul factor de risc pentru COVID-19. Față. Immunol. 2020; 11 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]129. Wrapp D., Wang N., Corbett KS, Goldsmith JA, Hsieh CL, Abiona O. Structura Cryo-EM a vârfului 2019-nCoV în conformația de prefuzie. Ştiinţă. 2020; 367 (6483): 1260–1263. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]130. Martín Giménez VM, Inserra F., Tajer CD, Mariani J., Ferder L., Reiter RJ Lungs ca țintă a infecției COVID-19: mecanisme moleculare comune de protecție ale vitaminei D și ale melatoninei ca un nou tratament sinergic potențial. Life Science. 2020; 254 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]131. Zhang H., Penninger JM, Li Y., Zhong N., Slutsky AS Angiotensin-converting enzima 2 (ACE2) ca receptor SARS-CoV-2: mecanisme moleculare și țintă terapeutică potențială. Terapie intensivă Med. 2020; 46 (4): 586–590. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]132. Hathaway D., Pandav K., Patel M., Riva-Moscoso A., Singh BM, Patel A. Acizi grași Omega 3 și COVID-19: o revizuire cuprinzătoare. Infectează Chemother. 2020; 52 (4): 478-495. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]133. Aygun H. Vitamina D poate preveni afectarea multiplă a organelor cauzată de infecția COVID-19. Arh. Naunyn-Schmiedeberg. Farmacol. 2020; 393 (7): 1157–1160. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]134. Kumar D., Gupta P., Banerjee D. Scrisoare: vitamina D are un rol potențial împotriva COVID-19? Aliment. Farmacol. Ther. 2020; 52 (2): 409–411. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]135. Xu J., Yang J., Chen J., Luo Q., Zhang Q., Zhang H. Vitamina D ameliorează leziunile pulmonare acute induse de lipopolizaharide prin reglarea sistemului renină-angiotensină. Mol. Med. Rep. 2017; 16 (5): 7432-7438. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]136. Xiao D., Li X., Su X., Mu D., Qu Y. Ar putea leziunea pulmonară indusă de SARS-CoV-2 să fie atenuată de vitamina D? Int. J. Infectează. Dis. 2020; 102 : 196–202. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]137. Zhou P., Yang XL, Wang XG, Hu B., Zhang L., Zhang W. Un focar de pneumonie asociat cu un nou coronavirus de origine probabilă a liliecilor. Natură. 2020; 579 (7798): 270-273. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]138. Biggs L., Yu C., Fedoric B., Lopez AF, Galli SJ, Grimbaldeston MA Dovezi că vitamina D (3) promovează reducerea dependentă de mastocite a patologiei cronice a pielii indusă de UVB la șoareci. J. Exp. Med. 2010; 207 (3): 455–463. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]139. Skrajnowska D., Bobrowska-Korczak B. Rolul zincului în sistemul imunitar și mecanismele de apărare anti-cancer. Nutrienți. 2019; 11 (10): 2273. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]140. Mohan M., Cherian JJ, Sharma A. Explorarea legăturilor dintre deficitul de vitamina D și COVID-19. PLoS Pathog. 2020; 16 (9) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]141. Stone KD, Prussin C., Metcalfe DD IgE, mastocite, bazofile și eozinofile. J. Alergie Clin. Immunol. 2010; 125 (2 Suppl 2): ​​S73 – S80. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]142. Kempuraj D., Selvakumar GP, Ahmed ME, Raikwar SP, Thangavel R., Khan A. COVID-19, mastocite, furtuna de citokine, stres psihologic și neuroinflamare. Neurolog. 2020; 26 (5-6): 402-414. [ PubMed ] [ Google Scholar ]143. Graham AC, Temple RM, Obar JJ Mast cells and virus gripal A: asociere cu răspunsuri alergice și nu numai. Față. Immunol. 2015; 6 : 238. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]144. Wang X., Kulka M. n-3 Acizi grași polinesaturați și activarea mastocitelor. J. Leukoc. Biol. 2015; 97 (5): 859-871. [ PubMed ] [ Google Scholar ]145. Mukai K., Tsai M., Saito H., Galli SJ Mastocitele ca surse de citokine, chemokine și factori de creștere. Immunol. Rev. 2018; 282 (1): 121-150. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]146. Kawakami T., Ando T., Kimura M., Wilson BS, Kawakami Y. Mastocite în dermatita atopică. Curr. Opin. Immunol. 2009; 21 (6): 666-678. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]147. Baeke F., Takiishi T., Korf H., Gysemans C., Mathieu C. Vitamina D: modulator al sistemului imunitar. Curr. Opin. Farmacol. 2010; 10 (4): 482–496. [ PubMed ] [ Google Scholar ]148. Meftahi GH, Jangravi Z., Sahraei H., Bahari Z. Posibilul mecanism de fiziopatologie a furtunii de citokine la adulții vârstnici cu infecție COVID-19: contribuția „îmbătrânirii inflamabile. Inflamm. Res. 2020; 69 (9) : 825-839. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]149. Jafarzadeh A., Chauhan P., Saha B., Jafarzadeh S., Nemati M. Contribuția monocitelor și macrofagelor la inflamația țesutului local și la furtuna de citokine în COVID-19: lecții din SARS și MERS și potențiale intervenții terapeutice. Life Science. 2020; 257 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]150. Harihar1an A., Hakeem AR, Radhakrishnan S., Reddy MS, Rela M. Rolul și potențialul terapeutic al căii NF-kappa-B la pacienții cu COVID-19 severe. Inflammofarmacologie. 2020; 7 : 1-10. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]151. Wensveen FM, Valentić S., Šestan M., Turk Wensveen T., Polić B. „Big Bang” în grăsimea obeză: evenimente care declanșează inflamația țesutului adipos indusă de obezitate. Euro. J. Immunol. 2015; 45 (9): 2446–2456. [ PubMed ] [ Google Scholar ]152. Blanchard C., Rothenberg ME Biologia eozinofilului. Adv. Immunol. 2009; 101 : 81–121. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]153. Hogan SP, Rosenberg HF, Moqbel R., Phipps S., Foster PS, Lacy P., Kay AB, Rothenberg ME Eozinofile: proprietăți biologice și rol în sănătate și boală. Clin. Exp. Alergie. 2008; 38 (5): 709-750. [ PubMed ] [ Google Scholar ]154. Davoine F., Lacy P. Citokine eozinofile, chemokine și factori de creștere: roluri emergente în imunitate. Față. Immunol. 2014; 5 : 570. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]155. Pacha O., Sallman MA, Evans SE COVID-19: un caz pentru inhibarea IL-17? Nat. Pr. Immunol. 2020; 20 (6): 345-346. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]156. Aggarwal N., Korenbaum E., Mahadeva R., Immenschuh S., Grau V., Dinarello CA acidul α-linoleic îmbunătățește capacitatea α-1 antitripsinei de a inhiba IL-1β indusă de lipopolizaharide în neutrofilele din sânge uman. Mol. Med. 2016; 22 : 680-693. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]157. Mantovani A., Cassatella MA, Costantini C., Jaillon S. Neutrofile în activarea și reglarea imunității înnăscute și adaptative. Nat. Pr. Immunol. 2011; 11 (8): 519-531. [ PubMed ] [ Google Scholar ]158. Tecchio C., Micheletti A., Cassatella MA Citokine derivate din neutrofile: fapte dincolo de expresie. Față. Immunol. 2014; 5 : 508. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]159. Lau YL, Peiris JS, Legea HK ​​Rolul celulelor dendritice în infecția cu coronavirus SARS. Hong Kong Med. J. 2012; 18 (Supliment 3): 28-30. [ PubMed ] [ Google Scholar ]160. Shibabaw T. Citokină inflamatorie: IL-17A Calea de semnalizare la pacienții prezenți cu COVID-19 și strategia curentă de tratament. J. Inflamm. Rez. 2020; 13 : 673–680. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]161. Marone G., Columbo M., de Paulis A., Cirillo R., Giugliano R., Condorelli M. Concentrațiile fiziologice de zinc inhibă eliberarea de histamină din bazofilele umane și mastocitele pulmonare. Acțiuni ale agenților. 1986; 18 (1-2): 103-106. [ PubMed ] [ Google Scholar ]162. Feltis BN, Elbaz A., Wright PF, Mackay GA, Turney TW, Lopata AL Caracterizarea acțiunii inhibitoare a nanoparticulelor de oxid de zinc asupra activării mastocitare de tip alergic. Mol. Immunol. 2015; 66 (2): 139-146. [ PubMed ] [ Google Scholar ]163. Gueck T., Seidel A., Fuhrmann H. Efectele acizilor grași esențiali asupra mediatorilor mastocitelor în cultură. Prostaglandine Leukot. Esențial. Acizi grași. 2003; 68 (5): 317-322. [ PubMed ] [ Google Scholar ]164. Park BK, Park S., Park JB, Park MC, Min TS, Jin M. Acizii grași omega-3 suprimă expresiile genei citokinelor asociate Th2 și factorii de transcripție GATA în mastocite. J. Nutr. Biochimie. 2013; 24 (5): 868-876. [ PubMed ] [ Google Scholar ]165. Yip KH, Kolesnikoff N., Yu C., Hauschild N., Taing H., Biggs L. Mech, anisme ale represiunii metabolitului vitaminei D₃ a activării mastocitelor dependente de IgE. J. Alergie Clin. Immunol. 2014; 133 (5): 1356–1364. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]166. Liu ZQ, Li XX, Qiu SQ, Yu Y., Li MG, Yang LT Vitamina D contribuie la stabilizarea mastocitelor. Alergie. 2017; 72 (8): 1184–1192. [ PubMed ] [ Google Scholar ]167. Zhao JW, Ping JD, Wang YF, Liu XN, Li N., Hu ZL Vitamina D suprimă producția de factor de creștere endotelial vascular în mastocit prin inhibarea căii PI3K / Akt / p38 MAPK / HIF-1α în urticaria spontană cronică . Clin. Immunol. 2020; 215 [ PubMed ] [ Google Scholar ]168. Takemoto S., Yamamoto A., Tomonaga S., Funaba M., Matsui T. Deficitul de magneziu induce apariția mastocitelor în ficatul șobolanilor. J. Nutr. Știință. Vitaminol. 2013; 59 (6): 560-563. [ PubMed ] [ Google Scholar ]169. Ohbori K., Fujiwara M., Ohishi A., Nishida K., Uozumi Y., Nagasawa K. Administrarea profilactică orală de ameliorat de magneziu ameliorează colita indusă de sodiu dextran sulfat la șoareci printr-o scădere a acumulării colonului de exprimare a receptorilor P2X7 mastocitele. Biol. Pharm. Taur. 2017; 40 (7): 1071-1077. [ PubMed ] [ Google Scholar ]170. Haase H., Rink L. Transducția semnalului în monocite: rolul ionilor de zinc. Biometale. 2007; 20 (3-4): 579-585. [ PubMed ] [ Google Scholar ]171. Lu H., Xin Y., Tang Y., Shao G. Zincul a suprimat inflamația căilor respiratorii la șobolanii astmatici: efectele zincului asupra generării de eotaxină, MCP-1, IL-8, IL-4 și IFN-γ Biol. Trace Elem. Rez. 2012; 150 (1-3): 314-321. [ PubMed ] [ Google Scholar ]172. Cho E., Park Y. Asocierea între compoziția serică a acizilor grași și markerii imuni înnăscuti la adulții sănătoși. Nutr Res Pract. 2016; 10 (2): 182–187. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]173. Snodgrass RG, Huang S., Namgaladze D., Jandali O., Shao T., Sama S. Acidul docosahexaenoic și acidul palmitic modulează reciproc activarea monocitelor parțial prin stresul reticulului endoplasmatic. J. Nutr. Biochimie. 2016; 32 : 39–45. [ PubMed ] [ Google Scholar ]174. Sugimoto J., Romani AM, Valentin-Torres AM, Luciano AA, Ramirez Kitchen CM, Funderburg N. Magneziul scade producția inflamatorie de citokine: un nou mecanism imunomodulator înnăscut. J. Immunol. 2012; 188 (12): 6338–6346. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]175. Sun L., Li X., Xu M., Yang F., Wang W., Niu X. Imunomodularea in vitro a magneziului pe celula monocitară către macrofage antiinflamatorii. Regen Biomater. 2020; 7 (4): 391-401. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]176. Aude-Garcia C., Dalzon B., Ravanat JL, Collin-Faure V., Diemer H., Strub JM O analiză combinată proteomică și direcționată dezvăluie noi mecanisme toxice pentru nanoparticulele de oxid de zinc din macrofage. J Proteomica. 2016; 134 : 174–185. [ PubMed ] [ Google Scholar ]177. Zhao G., Etherton TD, Martin KR, Vanden Heuvel JP, Gillies PJ, West SG Efecte antiinflamatorii ale acizilor grași polinesaturați în celulele THP-1. Biochimie. Biofizi. Rez. Comun. 2005; 336 (3): 909–917. [ PubMed ] [ Google Scholar ]178. Rao Z., Zhang N., Xu N., Pan Y., Xiao M., Wu J. 1,25-Dihidroxivitamina D inhibă secreția de grup cu mobilitate ridicată indusă de LPS 1 (HMGB1) prin direcționarea NF- Calea legată de factorul E2 2-hemoeoxigenază-1-HMGB1 în macrofage. Față. Immunol. 2017; 8 : 1308. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]179. Helming L., Böse J., Ehrchen J., Schiebe S., Frahm T., Geffers R. 1alpha, 25-Dihydroxyvitamin D3 este un puternic supresor al activării macrofagelor mediate de interferon gamma. Sânge. 2005; 106 (13): 4351-4358. [ PubMed ] [ Google Scholar ]180. Karkeni E., Morin SO, Bou Tayeh B., Goubard A., Josselin E., Castellano R. Vitamina D controlează creșterea tumorii și infiltrarea cu celule T CD8 + în cancerul de sân. Față. Immunol. 2019; 10 : 1307. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]181. Turner DL, Ford WR, Kidd EJ, Broadley KJ, Powell C. Efectele sulfatului de magneziu nebulizat asupra inflamației și funcției căilor respiratorii cobai. Euro. J. Pharmacol. 2017; 801 : 79-85. [ PubMed ] [ Google Scholar ]182. Hu T., Xu H., Wang C., Qin H., An Z. Magneziul îmbunătățește diferențierea condrogenă a celulelor stem mezenchimale prin inhibarea inflamației activate de macrofage activate. Știință. Rep. 2018; 8 (1): 3406. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]183. Finamore A., Massimi M., Conti Devirgiliis L., Mengheri E. Deficitul de zinc induce deteriorarea barierei membranei și crește transmigrarea neutrofilelor în celulele Caco-2. J. Nutr. 2008; 138 (9): 1664–1670. [ PubMed ] [ Google Scholar ]184. Sakakibara Y., Sato S., Kawashima Y., Someya Y., Shirato K., Tachiyashiki K. Diferite răspunsuri de recuperare din deficitul dietetic de zinc în distribuția granulocitelor de șobolan. J. Nutr. Știință. Vitaminol. 2011; 57 (2): 197-201. [ PubMed ] [ Google Scholar ]185. Yoshida S., Yasutomo K., Watanabe T. Tratamentul cu DHA / EPA ameliorează boala cutanată asemănătoare dermatitei atopice prin blocarea producției de LTB4. J. Med. Investi. 2016; 63 (3-4): 187–191. [ PubMed ] [ Google Scholar ]186. Chang YF, Hou YC, Pai MH, Yeh SL, Liu JJ Efectele acizilor grași polinesaturați ω-3 asupra homeostaziei celulelor T CD4 + și a leziunilor pulmonare la șoarecii cu sepsis polimicrobian. J. Parenter. Nutr Enteral. 2017; 41 (5): 805-814. [ PubMed ] [ Google Scholar ]187. Akbas EM, Gungor A., ​​Ozcicek A., Akbas N., Askin S., Polat M. Vitamina D și inflamație: evaluare cu raport neutrofil-limfocit și raport trombocit-limfocit. Arc. Med. Știință. 2016; 12 (4): 721-727. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]188. Tang Y., Liu J., Yan Y., Fang H., Guo C., Xie R. 1,25-dihidroxivitamina-D3 promovează apoptoza neutrofilelor în parodontita cu pacienții cu diabet zaharat de tip 2 prin calea p38 / MAPK. Medicină (Baltim.) 2018; 97 (52) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]189. Li W., Wu X., Yu J., Ma C., Zhuang P., Zeng J., Zhang J., Deng G., Wang Y. Sulfatul de magneziu atenuează leziunile pulmonare acute induse de lipopolizaharide la șoareci. Bărbie. J. Fiziol. 2019; 62 (5): 203–209. [ PubMed ] [ Google Scholar ]190. Kitamura H., Morikawa H., Kamon H., Iguchi M., Hojyo S., Fukada T. Reglarea mediată de receptor, asemănătoare receptorilor, a homeostaziei zincului influențează funcția celulelor dendritice. Nat. Immunol. 2006; 7 (9): 971–977. [ PubMed ] [ Google Scholar ]191. Shumilina E., Xuan NT, Schmid E., Bhavsar SK, Szteyn K., Gu S. Zincul a indus moartea apoptotică a celulelor dendritice de șoarece. Apoptoza. 2010; 15 (10): 1177–1186. [ PubMed ] [ Google Scholar ]192. Zeyda M., MD Säemann, Stuhlmeier KM, Mascher DG, Nowotny PN, Zlabinger GJ Asocierea între compoziția serică a acizilor grași și markerii imunitari înnăscuti la adulții sănătoși. J. Biol. Chem. 2005; 280 (14): 14293-14301. [ PubMed ] [ Google Scholar ]193. Kong W., Yen JH, Ganea D. Acidul docosahexaenoic previne maturarea celulelor dendritice, inhibă diferențierea Th1 / Th17 specifică antigenului și suprimă encefalomielita autoimună experimentală. Brain Behav. Imun. 2011; 25 (5): 872-882. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]194. Vanherwegen AS, Eelen G., Ferreira GB, Ghesquière B., Cook DP, Nikolic T. Vitamina D controlează capacitatea celulelor dendritice umane de a induce celule T funcționale de reglare prin reglarea metabolismului glucozei. J. Steroid Biochem. Mol. Biol. 2019; 187 : 134–145. [ PubMed ] [ Google Scholar ]195. Piemonti L., Monti P., Sironi M., Fraticelli P., Leone BE, Dal Cin E. Vitamina D3 afectează diferențierea, maturarea și funcția celulelor dendritice derivate din monocite umane. J. Immunol. 2000; 164 (9): 4443–4451. [ PubMed ] [ Google Scholar ]196. Libako P., Miller J., Nowacki W., Castiglioni S., Maier JA, Mazur A. Concentrația extracelulară de Mg și blocanții de Ca modulează etapele inițiale ale răspunsului limfocitelor Th2 în co-cultură cu macrofage și celule dendritice. Euro. Cytokine Netw. 2015; 26 (1): 1-9. [ PubMed ] [ Google Scholar ]197. Richter M., Bonneau R., Girard MA, Beaulieu C., Larivée P. Starea zincului modulează infiltrarea bronhopulmonară eozinofilă într-un model murin de inflamație alergică. Cufăr. 2003; 123 (3 Suppl) [ PubMed ] [ Google Scholar ]198. Lang C., Murgia C., Leong M., Tan LW, Perozzi G., Knight D. Efecte antiinflamatorii ale zincului și modificări ale ARNm transportor de zinc la modelele de șoarece de inflamație alergică. A.m. J. Fiziol. Celula pulmonară Mol. Fiziol. 2007; 292 (2): L577 – L584. [ PubMed ] [ Google Scholar ]199. Tanigai T., Ueki S., Kihara J., Kamada R., Yamauchi Y., Sokal A. Acidul docosahexaenoic exercită acțiune antiinflamatorie asupra eozinofilelor umane prin mecanisme independente de receptor activate de proliferatorul peroxizomului. Int. Arc. Alergie Immunol. 2012; 158 (4): 375–386. [ PubMed ] [ Google Scholar ]200. Snyman JR, de Sommers K., Steinmann MA, Lizamore DJ Efectele calcitriolului asupra activității eozinofile și răspunsurile anticorpilor la pacienții cu schistosomiază. Euro. J. Clin. Farmacol. 1997; 52 (4): 277–280. [ PubMed ] [ Google Scholar ]201. Souto Filho Jtd, de Andrade AS, Ribeiro FM, Alves PAS, Simonini VRF Impactul deficitului de vitamina D asupra creșterii numărului de eozinofile din sânge. Hematol Oncol Stem Cell Ther. 2018; 11 (1): 25-29. [ PubMed ] [ Google Scholar ]202. Hungerford GF, Karson EF Eozinofilia deficitului de magneziu. Sânge. 1960; 16 (5): 1642–1650. [ PubMed ] [ Google Scholar ]203. Prasad AS Efectele deficitului de zinc asupra schimbărilor de citokine Th1 și Th2. J. Infectează. Dis. 2000; 182 (Supliment 1): S62 – S68. [ PubMed ] [ Google Scholar ]204. Bao B., Thakur A., ​​Li Y., Ahmad A., Azmi AS, Banerjee S. Contribuția imunologică a NF-κB în microambientul tumoral: un potențial rol protector al zincului ca agent antitumoral. Biochim. Biofizi. Acta Rev. Canc. 2012; 1825 (2): 160–172. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]205. Chang HH, Chen CS, Lin JY Uleiul dietetic de perilă inhibă producția de citokine proinflamatorii în lichidul de spălare bronhoalveolar al șoarecilor cu probleme de ovalbumină. Lipidele. 2008; 43 (6): 499-506. [ PubMed ] [ Google Scholar ]206. Mizota T., Fujita-Kambara C., Matsuya N., Hamasaki S., Fukudome T., Goto H. Efectul compoziției acizilor grași dietetici asupra polarizării Th1 / Th2 în limfocite. J. Parenter. Enteral Nutr. 2009; 33 (4): 390-396. [ PubMed ] [ Google Scholar ]207. Zhang P., Smith R., Chapkin RS, McMurray DN Acizii grași polinesaturați dietetici (n-3) modulează echilibrul murin Th1 / Th2 către polul Th2 prin suprimarea dezvoltării Th1. J. Nutr. 2005; 135 (7): 1745–1751. [ PubMed ] [ Google Scholar ]208. Chung HS, Park CS, Hong SH, Lee S., Cho ML, Her YM Effects of magnesium pretreatment on the level of T helper citokines and on the severity of reperfusion syndrome la pacienții supuși unui transplant de ficat donator viu. Magnes. Rez. 2013; 26 (2): 46-55. [ PubMed ] [ Google Scholar ]209. Kitabayashi C., Fukada T., Kanamoto M., Ohashi W., Hojyo S., Atsumi T. Zincul suprimă dezvoltarea Th17 prin inhibarea activării STAT3. Int. Immunol. 2010; 22 (5): 375–386. [ PubMed ] [ Google Scholar ]210. Lee H., Kim B., Choi YH, Hwang Y., Kim DH, Cho S. Inhibarea fosforilării kinazei 4 asociate cu receptorul interleukinei-1β mediate de interleukină-1β prin zinc conduce la reprimarea memoriei T de tip 17 răspuns la om. Imunologie. 2015; 146 (4): 645-656. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]211. Rosenkranz E., Maywald M., Hilgers RD, Brieger A., ​​Clarner T., Kipp M. Inducerea celulelor T reglatoare în encefalomielita autoimună experimentală condusă de Th1- / Th17 prin administrarea de zinc. J. Nutr. Biochimie. 2016; 29 : 116–123. [ PubMed ] [ Google Scholar ]212. Monk JM, Hou TY, Turk HF, Weeks B., Wu C., McMurray DN Acizi grași polinesaturați dietetici n-3 (PUFA) scad inflamația mediată de celule Th17 asociată cu obezitatea în timpul colitei. Plus unu. 2012; 7 (11) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]213. Han SC, Koo DH, Kang NJ, Yoon WJ, Kang GJ, Kang HK Acid docosahexaenoic ameliorează dermatita atopică generând Tregs și macrofage modificate IL-10 / TGF-β printr-un mecanism dependent de TGF-β. J. Investiți. Dermatol. 2015; 135 (6): 1556-1564. [ PubMed ] [ Google Scholar ]214. Rapoartele PUFA Huang CH, Hou YC, Pai MH, Yeh CL, Yeh SL Dietetice ω-6 / ω-3 afectează homeostazia celulelor Th / Treg la șoareci cu colită indusă de sodiu de dextran sulfat. J. Parenter. Enteral Nutr. 2017; 41 (4): 647-656. [ PubMed ] [ Google Scholar ]215. Daniel C., Sartory NA, Zahn N., Radeke HH, Stein JM Tratamentul imunomodulator al colitei acidului trinitrobenzen sulfonic cu calcitriol este asociat cu o schimbare a unui T helper (Th) 1 / Th17 la Th2 și a celulei T reglatoare profil. J. Pharmacol. Exp. Terapeut. 2008; 324 (1): 23–33. [ PubMed ] [ Google Scholar ]216. Tang J., Zhou R., Luger D., Zhu W., Silver PB, Grajewski RS Calcitriol suprimă autoimunitatea antiretinală prin efecte inhibitoare asupra răspunsului efector Th17. J. Immunol. 2009; 182 (8): 4624–4632. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]217. Rosenkranz E., Metz CH, Maywald M., Hilgers RD, Weßels I., Senff T. Suplimentarea cu zinc induce celule T reglatoare prin inhibarea Sirt-1 deacetilazei în culturi mixte de limfocite. Mol. Nutr. Alimente Res. 2016; 60 (3): 661-671. [ PubMed ] [ Google Scholar ]218. Maywald M., Meurer SK, Weiskirchen R., Rink L. Suplimentarea cu zinc mărește inducerea celulelor T reglatoare dependente de TGF-β1. Mol. Nutr. Alimente Res. 2017; 61 (3) [ PubMed ] [ Google Scholar ]219. Carlsson JA, Wold AE, Sandberg AS, Östman SM Acizii grași polinesaturați acidul arahidonic și acidul docosahexaenoic induc maturarea celulelor dendritice de șoarece, dar reduc răspunsurile celulelor T in vitro. Plus unu. 2015; 10 (11) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]220. Lian M., Luo W., Sui Y., Li Z., Hua J. Dietary n-3 PUFA protejează șoarecii de leziunea hepatică indusă de Con A prin modularea celulelor T reglatoare și a expresiei PPAR-γ. Plus unu. 2015; 10 (7) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]221. Onodera T., Fukuhara A., Shin J., Hayakawa T., Otsuki M., Shimomura I. Acidul eicosapentaenoic și 5-HEPE sporesc inducerea Treg mediată de macrofage la șoareci. Știință. Rep. 2017; 7 (1): 4560. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]222. Guillot X., Semerano L., Saidenberg-Kermanac’h N., Falgarone G., Boissier MC Vitamina D și inflamație. Coloanei vertebrale osoase articulare. 2010; 77 (6): 552-555. [ PubMed ] [ Google Scholar ]223. Gorman S., Geldenhuys S., Judge M., Weeden CE, Waithman J., Hart PH Vitamina D dietetică crește procentele și funcția celulelor T reglatoare în ganglionii limfatici care drenează pielea și suprimă inflamația dermică. J Immunol Res. 2016 2016. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]224. Fisher SA, Rahimzadeh M., Brierley C., Gration B., Doree C., Kimber CE Rolul vitaminei D în creșterea numărului de celule T reglatoare circulante și modularea fenotipurilor de celule T reglatoare la pacienții cu boli inflamatorii sau la voluntarii sănătoși : o revizuire sistematică. Plus unu. 2019; 14 (9) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]225. Summersgill H., England H., Lopez-Castejon G., Lawrence CB, Luheshi NM, Pahle J. Epuizarea zincului reglementează procesarea și secreția IL-1β Cell Death Dis. 2014; 5 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]226. Fan Y., Zhang X., Yang L., Wang J., Hu Y., Bian A. Zincul inhibă activarea inflammasomului NLRP3 indusă de glucoză în celulele mezoteliale peritoneale umane. Mol. Med. Rep. 2017; 16 (4): 5195-5202. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]227. Williams-Bey Y., Boularan C., Vural A., Huang NN, Hwang IY, Shan-Shi C. Acizii grași liberi omega-3 suprimă activarea macrofagelor inflammasome prin inhibarea activării NF-κB și îmbunătățirea autofagiei. Plus unu. 2014; 9 (6) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]228. De Boer AA, Monk JM, Liddle DM, Hutchinson AL, Power KA, Ma DW Acizii grași polinesaturați n-3 derivați din ulei de pește reduc activitatea inflammasomului NLRP3 și conversația inflamatorie legată de obezitate între adipocite și CD11b (+) macrofage. J. Nutr. Biochimie. 2016; 34 : 61–72. [ PubMed ] [ Google Scholar ]229. Kumar N., Gupta G., Anilkumar K., Fatima N., Karnati R., Reddy GV 15-Metaboliți lipoxigenaza acidului α-linolenic, [13- (S) -HPOTrE și 13- (S) -HOTrE ], mediază efectele antiinflamatorii prin inactivarea inflammasomului NLRP3. Știință. Rep. 2016; 6 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]230. Zhang JH, Chen YP, Yang X., nivelurile de vitamina D3 Li CQ și expresia NLRP3 în modele murine de astm obez: asociere cu rezultatele astmului. Braz. J. Med. Biol. Rez. 2017; 51 (1) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]231. Lu L., Lu Q., Chen W., Li J., Li C., Zheng Z. Vitamina D 3 protejează împotriva retinopatiei diabetice prin inhibarea activării induse de glucoză a căii inflammasome ROS / TXNIP / NLRP3. J Diabet. Rez. 2018 2018. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]232. Dai Y., Zhang J., Xiang J., Li Y., Wu D., Xu J. Calcitriolul inhibă axa de semnalizare ROS-NLRP3-IL-1β prin activarea semnalizării antioxidante Nrf2 în stresul hiperosmotic stimulat epitelialul corneean uman celule. Redox Biol. 2019; 21 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]233. Chang CY, Shih HJ, Huang IT, Tsai PS, Chen KY, Huang CJ Sulfatul de magneziu atenuează progresia hipertensiunii pulmonare monocrotaline la șobolani. Int. J. Mol. Știință. 2019; 20 (18): 4622. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]234. Li C., Chen M., He X., Ouyang D. O mini-revizuire a fluxurilor de ioni care reglează activarea inflammasomului NLRP3. Acta Biochim. Biofizi. Păcat. 2021; 53 (2): 131-139. [ PubMed ] [ Google Scholar ]235. von Bülow V., Dubben S., Engelhardt G., Hebel S., Plümäkers B., Heine H. Supresia dependentă de zinc a producției de TNF-alfa este mediată de inhibarea Raf-1, indusă de protein kinaza A, I kappa B kinază beta și NF-kappa B. J. Immunol. 2007; 179 (6): 4180-4186. [ PubMed ] [ Google Scholar ]236. Novak TE, Babcock TA, Jho DH, Helton WS, inhibarea Espat NJ NF-kappa B de acizi grași omega-3 modulează transcripția TNF-alfa a macrofagului stimulat de LPS. A.m. J. Fiziol. Celula pulmonară Mol. Fiziol. 2003; 284 (1): L84 – L89. [ PubMed ] [ Google Scholar ]237. Rogero MM, Leão MC, Santana TM, Pimentel MVMB, Carlini GCG, da Silveira TFF Beneficii potențiale și riscuri ale suplimentării cu acizi grași omega-3 la pacienții cu COVID-19. Radic liber. Biol. Med. 2020; 156 : 190-199. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]238. Yu XP, Bellido T., Manolagas SC Reglarea descendentă a nivelurilor de proteine ​​NF-kappa B în limfocitele umane activate de 1,25-dihidroxivitamina D3. Proc. Natl. Acad. Știință. SUA 1995; 92 (24): 10990-10994. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]239. Cohen-Lahav M., Shany S., Tobvin D., Chaimovitz C., Douvdevani A. Vitamina D scade activitatea NFkappaB prin creșterea nivelului IkappaBalpha. Nefrol. Formați. Transplant. 2006; 21 (4): 889–897. [ PubMed ] [ Google Scholar ]240. Wöbke TK, Sorg BL, Steinhilber D. Vitamina D în bolile inflamatorii. Față. Fiziol. 2014; 5 : 244. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]241. Su NY, Peng TC, Tsai PS, Huang CJ Calea fosfoinozidică 3-kinază / Akt este implicată în medierea efectelor antiinflamatoare ale sulfatului de magneziu. J. Surg. Rez. 2013; 185 (2): 726-732. [ PubMed ] [ Google Scholar ]242. Ren J., Chung SH Efectul antiinflamator al acidului alfa-linolenic și modul său de acțiune prin inhibarea producției de oxid nitric și expresia genei de oxid nitric sintază inductibilă prin căile NF-kappaB și protein kinază activate cu mitogen. J. Agric. Food Chem. 2007; 55 (13): 5073–5080. [ PubMed ] [ Google Scholar ]243. Xie N., Zhang W., Li J., Liang H., Zhou H., Duan W. Aportul de acid α-linolenic atenuează ischemia miocardică / leziunea de reperfuzie prin efecte anti-inflamatorii și anti-oxidative de stres la diabetici, dar nu șobolani normali. Arc. Med. Rez. 2011; 42 (3): 171–181. [ PubMed ] [ Google Scholar ]244. Bi X., Li F., Liu S., Jin Y., Zhang X., Yang T. acids-3 acizi grași polinesaturați ameliorează diabetul de tip 1 și autoimunitatea. J. Clin. Investi. 2017; 127 (5): 1757–1771. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]245. Choi M., Park H., Cho S., Lee M. Suplimentarea cu vitamina D3 modulează răspunsurile inflamatorii din cauza leziunilor musculare induse de exercițiile de intensitate ridicată la șobolanii SD. Citokine. 2013; 63 (1): 27-35. [ PubMed ] [ Google Scholar ]246. Bessler H., Djaldetti M. 1α, 25-Dihidroxivitamina D3 modulează interacțiunea dintre celulele imune și celulele de cancer de colon. Biomed. Farmacoter. 2012; 66 (6): 428-432. [ PubMed ] [ Google Scholar ]247. Lysandropoulos AP, Jaquiéry E., Jilek S., Pantaleo G., Schluep M., Du Pasquier RA Vitamina D are un efect imunomodulator direct asupra celulelor T CD8 + ale pacienților cu scleroză multiplă timpurie și subiecți de control sănătoși. J. Neuroimunol. 2011; 233 (1-2): 240-244. [ PubMed ] [ Google Scholar ]248. Lucisano S., Arena A., Stassi G., Iannello D., Montalto G., Romeo A. Rolul paricalcitolului în modularea răspunsului imun la pacienții cu boală renală. Internet J. Endocrinol. 2015; 2015 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]249. Han F., Xu L., Huang Y., Chen T., Zhou T., Yang L. Sulfatul de magneziu poate atenua stresul oxidativ și reduce citokinele inflamatorii din placenta de șobolan a modelului de colestază intrahepatică a sarcinii. Arc. Ginecol. Obstet. 2018; 298 (3): 631–638. [ PubMed ] [ Google Scholar ]250. Schubert C., Guttek K., Grüngreiff K., Thielitz A., Bühling F., Reinhold A. Aspartatul de zinc oral tratează encefalomielita autoimună experimentală. Biometale. 2014; 27 (6): 1249–1262. [ PubMed ] [ Google Scholar ]251. Cippitelli M., Santoni M. Vitamina D3: un modulator transcripțional al genei interferon. Euro. J. Immunol. 1998; 28 : 3017–3030. [ PubMed ] [ Google Scholar ]252. Sharifi A., Vahedi H., Nedjat S., Rafiei H., Hosseinzadeh-Attar MJ Efectul injecției cu doză unică de vitamina D asupra citokinelor imune la pacienții cu colită ulcerativă: un studiu randomizat controlat cu placebo. APMIS. 2019; 127 (10): 681-687. [ PubMed ] [ Google Scholar ]253. Carvalho JTG, Schneider M., Cuppari L., Grabulosa CC, T Aoike D., Q Redublo BM Colecalciferol scade inflamația și îmbunătățește enzimele de reglare a vitaminei D din limfocitele din mediul uremic: un studiu pilot controlat randomizat. Plus unu. 2017; 12 (6) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]254. Bao S., Liu MJ, Lee B., Besecker B., Lai JP, Guttridge DC Zinc modulează răspunsul imun înnăscut in vivo la sepsisul polimicrobian prin reglarea NF-kappaB. A.m. J. Fiziol. Celula pulmonară Mol. Fiziol. 2010; 298 (6): L744 – L754. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]255. Tyagi A., Kumar U., Reddy S., Santosh VS, Mohammed SB, Ehtesham NZ Atenuarea inflamației colonice prin înlocuirea parțială a acidului linoleic dietetic cu acid α-linolenic într-un model de șobolan al bolii inflamatorii intestinale. Fr. J. Nutr. 2012; 108 (9): 1612–1622. [ PubMed ] [ Google Scholar ]256. Liu YH, Li XY, Chen CY, Zhang HM, Kang JX Omega-3 intervenția cu acizi grași suprimă inflamația indusă de lipopolizaharide și pierderea în greutate la șoareci. Mar. Droguri. 2015; 13 (2): 1026-1036. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]257. Cui C., Xu P., Li G., Qiao Y., Han W., Geng C. Activarea receptorului de vitamina D reglează polarizarea microgliei și stresul oxidativ la șobolanii hipertensivi spontan și celulele microgliene expuse la angiotensină II: rolul reninei -sistemul angiotensinei. Redox Biol. 2019; 26 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]258. Chang YY, Kao MC, Lin JA, Chen TY, Cheng CF, Wong CS, Tzeng IS, Huang CJ Efectele MgSO4 asupra inhibării inflammasomului proteinei receptorului Nod-like 3 implică scăderea calciului intracelular. J. Surg. Rez. 2018; 221 : 257–265. [ PubMed ] [ Google Scholar ]259. Ozen M., Xie H., Shin N., Al Yousif G., Clemens J., McLane MW Sulfatul de magneziu inhibă inflamația prin receptorii P2X7 din celulele endoteliale ale venei ombilicale umane. Pediatru. Rez. 2020; 87 (3): 463–471. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]260. Uzzo RG, Crispen PL, Golovine K., Makhov P., Horwitz EM, Kolenko VM Diverse efecte ale zincului asupra factorilor de transcripție NF-kappaB și AP-1: implicații pentru progresia cancerului de prostată. Carcinogeneză. 2006; 27 (10): 1980-1990. [ PubMed ] [ Google Scholar ]261. Orrù B., Szekeres-Bartho J., Bizzarri M., Spiga AM, Unfer V. Efecte inhibitoare ale vitaminei D asupra inflamației și eliberării IL-6. Un sprijin suplimentar pentru managementul COVID-19? Euro. Pr. Med. Farmacol. Știință. 2020; 24 (15): 8187–8193. [ PubMed ] [ Google Scholar ]262. Silberstein M. Vitamina D: o alternativă mai simplă la tocilizumab pentru studiu în COVID-19? Med. Ipoteze. 2020; 140 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]263. Jiang J., Chen Q., Chen X., Li J., Li S., Yang B. Sulfatul de magneziu ameliorează disfuncția diafragmului indusă de sepsis la șobolani prin inhibarea căii HMGB1 / TLR4 / NF-κB. Neuroreport. 2020; 31 (12): 902–908. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]264. Rani V., Verma Y., Rana K., Rana SVS Nanoparticulele de oxid de zinc inhibă leziunile hepatice induse de dimetilnitrosamină la șobolan. Chem. Biol. Interacționa. 2018; 295 : 84-92. [ PubMed ] [ Google Scholar ]265. Kong W., Yen JH, Vassiliou E., Adhikary S., Toscano MG, Ganea D. Acidul docosahexaenoic previne maturarea celulelor dendritice și exprimarea in vitro și in vivo a familiei de citokine IL-12. Sănătate lipidelor Dis. 2010; 9:12 . [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]266. Benson AA, Toh JA, Vernon N., Jariwala SP Rolul vitaminei D în imunopatogeneza bolilor alergice ale pielii. Alergie. 2012; 67 : 296-301. [ PubMed ] [ Google Scholar ]267. Martínez-Moreno J., Hernandez JC, Urcuqui-Inchima S. Efectul dozelor mari de suplimentare cu vitamina D asupra replicării virusului dengue, expresiei receptorului de tip Toll și profilurilor de citokine pe celulele dendritice. Mol. Celula. Biochimie. 2020; 464 (1-2): 169-180. [ PubMed ] [ Google Scholar ]268. Reda R., Abbas AA, Mohammed M., El Fedawy SF, Ghareeb H., El Kabarity RH Interacțiunea dintre zinc, vitamina D și, IL-17 la pacienții cu boală hepatică cronică C. J Immunol Res. 2015 2015. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]269. Cantorna MT, Snyder L., Lin YD, Yang L. Vitamina D și 1,25 (OH) reglarea 2D a celulelor T. Nutrienți. 2015; 7 (4): 3011-3021. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]270. Schardey J., Globig AM, Janssen C., Hofmann M., Manegold P., Thimme R. Vitamina D inhibă funcția de celule T proinflamatoare la pacienții cu boală inflamatorie intestinală. J Crohns Colitis. 2019; 13 (12): 1546–1557. [ PubMed ] [ Google Scholar ]271. Muroi M., Tanamoto K. Zinc- și degradarea proprietății oxidative dependente de pro-caspază-1 și NLRP3 de ziram în macrofagele de șoarece. Toxicol. Lett. 2015; 235 (3): 199–205. [ PubMed ] [ Google Scholar ]272. Kong J., Grando SA, Li YC Regulamentul citokinelor familiei IL-1 IL-1alpha, antagonist al receptorului IL-1 și IL-18 de 1,25-dihidroxivitamină D3 în keratinocite primare. J. Immunol. 2006; 176 (6): 3780–3787. [ PubMed ] [ Google Scholar ]273. Yang FX, Hou L., Wen WL, Shen XL, Feng NY, Ma RX Rolul sulfatului de zinc în reglarea imunitară în celulele mastocitomului P815 provocate de polen Artemisia annua. Immunol. Investi. 2020; 49 (6): 622–631. [ PubMed ] [ Google Scholar ]274. Fletcher P., Hamilton RF, Buford M., Postma B., Pestka JJ, Holian A. Compararea acidului docosahexaenoic ca tratament profilactic pentru șoarecii Balb / c expuși la particule acute și cronice. L Immunol. 2019; 202 (1 supliment): 117. 6. [ Google Scholar ]275. Mohammadi-Kordkhayli M., Ahangar-Parvin R., Azizi SV, Nemati M., Shamsizadeh A., Khaksari M. Vitamina D modulează expresia IL-27 și IL-33 în sistemul nervos central în encefalomielita autoimună experimentală. (EAE) Iran J Immunol. 2015; 12 (1): 35–49. [ PubMed ] [ Google Scholar ]276. Monk JM, Liddle DM, Brown MJ, Zarepoor L., De Boer AA, Ma DW. Mol. Nutr. Alimente Res. 2016; 60 (3): 621-630. [ PubMed ] [ Google Scholar ]277. Han H., Qiu F., Zhao H., Tang H., Li X., Shi D. Uleiul de in din dietă previne boala hepatică grasă nealcoolică indusă de dietă de tip occidental la șoarecii knockout apolipoproteină-E. Oxid Med Cell Longev. 2017 2017. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]278. Song J., Jing Z., Hu W., Yu J., Cui X. Acidul α-linolenic inhibă receptorul activator al ligandului NF-κB indus (indus de RANKL) osteoclastogeneză și previne pierderea osoasă inflamatorie prin reglarea descendentă a factorului nuclear -cappaB-sintaze inductibile de oxid nitric (NF-κB-iNOS) căi de semnalizare. Med. Știință. Lun. Int. Med. J. Exp. Clin. Rez. 2017; 23 : 5056–5069. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]279. Spigoni V., Lombardi C., Cito M., Picconi A., Ridolfi V., Andreoli R. N-3 PUFA cresc biodisponibilitatea și funcția celulelor progenitoare endoteliale. Food Func. 2014; 5 (8): 1881–1890. [ PubMed ] [ Google Scholar ]280. Zhang J., McCullough PA, deficitul de vitamina D al Tecson KM în asociere cu disfuncția endotelială: implicații pentru pacienții cu COVID-19. Pr. Cardiovasc. Med. 2020; 21 (3): 339-344. [ PubMed ] [ Google Scholar ]281. Thota C., Farmer T., Garfield RE, Menon R., Al-Hendy A. Vitamina D provoacă răspuns anti-inflamator, inhibă proteinele contractile asociate și modulează receptorii de tip Toll în celulele miometriale umane. Reprod. Știință. 2013; 20 (4): 463-475. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]282. MD Sanchez-Niño, Bozic M., Córdoba-Lanús E., Valcheva P., Gracia O., Ibarz M. Dincolo de proteinurie: Activarea VDR reduce inflamația renală în nefropatia diabetică experimentală. A.m. J. Fiziol. Ren. Fiziol. 2012; 302 (6): F647 – F657. [ PubMed ] [ Google Scholar ]283. Beloosesky R., Khatib N., Ginsberg Y., Anabosy S., Shalom-Paz E., Dahis M. Efecte neuroprotectoare fetale ale sulfatului de magneziu matern asupra fătului: inhibarea oxidului de azot neuronal sintază și a factorului nuclear kappa-light- amplificator de lanț al activării celulelor B activate într-un model de rozătoare. A.m. J. Obstet. Ginecol. 2016; 215 (3): 382. e1-6. [ PubMed ] [ Google Scholar ]284. Slinko S., Piraino G., Hake PW, Ledford JR, O’Connor M., Lahni P. Suplimentarea combinată a zincului cu tratamentul cu peptidă C proinsulină scade răspunsul inflamator și mortalitatea în sepsisul polimicrobian murin. Şoc. 2014; 41 (4): 292–300. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]285. Lund AS, Hasselbalch AL, Gamborg M., Skogstrand K., Hougaard DM, Heitmann BL N-3 acizi grași polinesaturați, grăsime corporală și inflamație. Fapte Obes. 2013; 6 (4): 369–379. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]286. Boontanrart M., Hall SD, Spanier JA, Hayes CE, Olson JK Vitamina D3 modifică activarea imunitară a microgliei printr-un mecanism SOCS3 dependent de IL-10. J. Neuroimunol. 2016; 292 : 126–136. [ PubMed ] [ Google Scholar ]287. Wang LJ, Wang MQ, Hu R., Yang Y., Huang YS, Xian SX Efectul suplimentării cu zinc asupra pacienților cu întreținere cu hemodializă: o analiză sistematică și meta-analiză a 15 studii controlate randomizate. BioMed Res. Int. 2017 2017. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]288. Khorsandi H., Nikpayam O., Yousefi R., Parandoosh M., Hosseinzadeh N., Saidpour A. Suplimentarea cu zinc îmbunătățește gestionarea greutății corporale, biomarkerii inflamatori și rezistența la insulină la persoanele cu obezitate: un control dublu, randomizat, controlat cu placebo, dublu -proces orb. Diabetol. Metab. Sindromul. 2019; 11 : 101. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]289. Hajji M., Khedher R., Mrad M., Bassem HM, Rafrafi N., Chouchi S. Efectele suplimentării de zinc asupra raportului cupru seric la zinc și a raportului CRP la albumină la pacienții cu hemodializă. J. Med. Biochimie. 2021; 40 (2): 193–198. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]290. Thota RN, Rosato JI, Burrows TL, Dias CB, Abbott KA, Martins RN Suplimentul cu ulei de pește bogat în acid docosahexaenoic reduce kinaza asociată cu rezistența la insulină la adulții supraponderali și obezi. Nutrienți. 2020; 12 (6): 1612. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]291. Kasemy ZA, Hathout HM, Omar ZA, Samir MA, Bahbah WA Efectul suplimentelor Omega-3 asupra calității vieții în rândul copiilor dializați: un studiu prospectiv de cohortă. Medicină (Baltim.) 2020; 99 (40) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]292. AbuMweis S., Abu Omran D., Al-Shami I., Jew S. Raportul dintre acidul eicosapentaenoic și acidul docosahexaenoic ca modulator pentru efectele cardio-metabolice ale suplimentelor omega-3: o meta-regresie a studiilor clinice randomizate încercări. Compl. Ther. Med. 2021; 57 [ PubMed ] [ Google Scholar ]293. Cheshmazar E., Hosseini AF, Yazdani B., Razmpoosh E., Zarrati M. Efectele suplimentării cu vitamina D asupra nivelurilor de omentin-1 și spexină, parametrii inflamatori, profilul lipidic și indicii antropometrici la adulții obezi și supraponderali cu vitamina D deficit în cadrul unei diete hipocalorice. Complement Evid Based Alternat Med. 2020 2020. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]294. Zhao JF, Li BX, Zhang Q. Vitamina D îmbunătățește nivelurile de stres hormonal, oxidativ și parametrii inflamatori în sindromul ovarului polichistic: un studiu de meta-analiză. Ann. Palliat. Med. 2021; 10 (1): 169–183. [ PubMed ] [ Google Scholar ]295. Mazidi M., Rezaie P., Banach M. Efectul suplimentelor de magneziu asupra proteinelor serice C-reactive: o revizuire sistematică și meta-analiză. Arc. Med. Știință. 2018; 14 (4): 707–716. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]296. Aster I., Barth LM, Rink L., Wessels I. Modificările fluidității membranei sunt implicate în inhibarea semnalizării induse de GM-CSF în celulele mieloide de către zinc. J. Trace Elem. Med. Biol. 2019; 54 : 214–220. [ PubMed ] [ Google Scholar ]297. Jensen KN, Omarsdottir SY, Reinhardsdottir MS, Hardardottir I., Freysdottir J. Acidul docosahexaenoic modulează efectele celulelor NK asupra neutrofilelor și a diafragmei acestora. Față. Immunol. 2020; 11 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]298. Ibrahim A., Mbodji K., Hassan A., Aziz M., Boukhettala N., Coëffier M. Efect antiinflamator și anti-angiogenic al acizilor grași polinesaturați n-3 cu lanț lung în endoteliul microvascular intestinal. Clin. Nutr. 2011; 30 (5): 678-687. [ PubMed ] [ Google Scholar ]299. Yusupov E., Li-Ng M., Pollack S., Yeh JK, Mikhail M., Aloia JF Vitamina D și citokinele serice într-un studiu clinic randomizat. Internet J. Endocrinol. 2010; 2010 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]300. Konya V., Czarnewski P., Forkel M., Rao A., Kokkinou E., Villablanca EJ Vitamina D reglează în jos calea receptorului IL-23 în celulele limfoide înnăscute din grupa mucoasă 3 umană. J. Alergie Clin. Immunol. 2018; 141 (1): 279–292. [ PubMed ] [ Google Scholar ]301. Towers TL, Staeva TP, Freedman LP Un mecanism cu două lovituri pentru represiunea transcripțională mediată de vitamina D3 a genei factorului de stimulare a coloniei granulocite-macrofage: receptorul vitaminei D concurează pentru legarea ADN-ului cu NFAT1 și stabilizează c-Jun. Mol. Cell Biol. 1999; 19 (6): 4191–4199. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]302. Tobler A., ​​Gasson J., Reichel H., Norman AW, Koeffler HP Granulocyte-macrophage colony-stimulant factor. Reglare sensibilă și mediată de receptor de 1,25-dihidroxivitamina D3 în limfocitele normale din sângele periferic uman. J. Clin. Investi. 1987; 79 (6): 1700–1705. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]303. Li G., Fan Y., Lai Y., Han T., Li Z., Zhou P. Coronavirus infecții și răspunsuri imune. J. Med. Virol. 2020; 92 (4): 424-432. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]304. Li X., Geng M., Peng Y., Meng L., Lu S. Patogenia imună moleculară și diagnosticarea COVID-19. J Pharm Anal. 2020; 10 (2): 102–108. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]305. Ferrucci L., Fabbri E. Inflamare: inflamație cronică în timpul îmbătrânirii, bolilor cardiovasculare și fragilitate. Nat. Pr. Cardiol. 2018; 15 (9): 505–522. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]306. Fiorino S., Gallo C., Zippi M., Sabbatani S., Manfredi R., Moretti R. Furtuna de citokine la persoanele în vârstă cu CoV-2: rol posibil al vitaminelor ca terapie sau strategie preventivă. Clinica de îmbătrânire. Exp. Rez. 2020; 32 (10): 2115-2131. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]307. Marazuela M., Giustina A., Puig-Domingo M. Aspecte endocrine și metabolice ale pandemiei COVID-19. Pr. Endocr. Metab. Tulburare. 2020; 21 (4): 495-507. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]308. Rai V., Agrawal DK Rolul vitaminei D în bolile cardiovasculare. Endocrinol Metab. Clin. N. Am. 2017; 46 (4): 1039–1059. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]309. Williams JW, Huang LH, Randolph GJ Cytokine circuits in cardiovasculare. Imunitate. 2019; 50 (4): 941-954. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]310. Koelman L., Pivovarova-Ramich O., Pfeiffer AFH, Grune T., Aleksandrova K. Citokine pentru evaluarea stării inflamatorii cronice în cercetarea îmbătrânirii: fiabilitate și caracterizare fenotipică. Imun. Îmbătrânire. 2019; 16 : 11. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]311. Janssen CI, Kiliaan AJ Acizi grași polinesaturați cu lanț lung (LCPUFA) de la geneză la senescență: influența LCPUFA asupra dezvoltării neuronale, îmbătrânirii și neurodegenerării. Prog. Lipid Res. 2014; 53 : 1–17. [ PubMed ] [ Google Scholar ]312. Barbagallo M., Belvedere M., Dominguez LJ Homeostazie de magneziu și îmbătrânire. Magnes. Rez. 2009; 22 (4): 235–246. [ PubMed ] [ Google Scholar ]313. Morgante G., Troìa L., De Leo V. Coronavirus Disease 2019 (SARS-CoV-2) și boala ovariană polichistică: există un risc mai mare pentru aceste femei? J. Steroid Biochem. Mol. Biol. 2020; 205 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]314. Wang EW, Siu PM, Pang MY, Woo J., Collins AR, Benzie IFF Deficitul de vitamina D, stresul oxidativ și starea antioxidantă: numai asociere slabă observată în absența vârstei avansate, a obezității sau a bolii preexistente. Fr. J. Nutr. 2017; 118 (1): 11-16. [ PubMed ] [ Google Scholar ]315. Olechnowicz J., Tinkov A., Skalny A., Suliburska J. Statutul de zinc este asociat cu inflamația, stresul oxidativ, lipidele și metabolismul glucozei. J. Fiziol. Știință. 2018; 68 (1): 19–31. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]316. Fukunaka A., Fujitani Y. Rolul homeostaziei zincului în patogeneza diabetului și a obezității. Int. J. Mol. Știință. 2018; 19 (2): 476. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]317. Mossink JP Zinc ca măsură nutrițională de prevenire și intervenție pentru boala COVID-19. BMJ Nutr Prev Health. 2020; 3 (1): 111-117. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]318. Chabosseau P., Rutter GA Zinc și diabet. Arc. Biochimie. Biofizi. 2016; 611 : 79-85. [ PubMed ] [ Google Scholar ]319. Simopoulos AP O creștere a raportului de acizi grași omega-6 / omega-3 crește riscul de obezitate. Nutrienți. 2016; 8 (3): 128. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]320. Torrinhas RS, Calder PC, Waitzberg DL Răspuns la Bistrian BR. Emulsii parenterale de ulei de pește în emulsii COVID-19 bolnave critic. J. Parenter. Enteral Nutr. 2020; 44 (7): 1169–1170. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]321. Rafiq S., Jeppesen PB Indicele de masă corporală, vitamina D și diabetul de tip 2: o revizuire sistematică și meta-analiză. Nutrienți. 2018; 10 (9): 1182. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]322. Walsh JS, Bowles S., Evans AL Vitamina D în obezitate. Curr. Opin. Endocrinol. Obezitatea diabetului. 2017; 24 (6): 389-394. [ PubMed ] [ Google Scholar ]323. Hyppönen E., Boucher BJ Adipozitatea, necesarul de vitamina D și implicațiile clinice pentru anomaliile metabolice legate de obezitate. Nutr. Rev. 2018; 76 (9): 678-692. [ PubMed ] [ Google Scholar ]324. Yao Y., Zhu L., He L., Duan Y., Liang W., Nie Z. O meta-analiză a relației dintre deficitul de vitamina D și obezitate. Int. J. Clin. Exp. Med. 2015; 8 (9): 14977–14984. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]325. Li X., Liu Y., Zheng Y., Wang P., Zhang Y. Efectul suplimentării cu vitamina D asupra controlului glicemic la pacienții cu diabet zaharat de tip 2: o analiză sistematică și meta-analiză. Nutrienți. 2018; 10 (3): 375. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]326. Mauss D., Jarczok MN, Hoffmann K., Thomas GN, Fischer JE Asociația nivelurilor de vitamina D cu diabet de tip 2 la adulții care lucrează în vârstă. Int. J. Med. Știință. 2015; 12 (5): 362–368. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]327. Nielsen FH Magneziu, inflamație și obezitate în bolile cronice. Nutr. Rev. 2010; 68 (6): 333-340. [ PubMed ] [ Google Scholar ]328. Madjid M., Safavi-Naeini P., Solomon SD, Vardeny O. Efectele potențiale ale coronavirusurilor asupra sistemului cardiovascular: o revizuire. JAMA Cardiol. 2020; 5 (7): 831-840. [ PubMed ] [ Google Scholar ]329. Radenkovic D., Chawla S., Pirro M., Sahebkar A., ​​Banach M. Colesterol în raport cu COVID-19: ar trebui să ne pese de el? J. Clin. Med. 2020; 9 (6): 1909. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]330. Choi S., Cui C., Luo Y., Kim SH, Ko JK, Huo X. Efectele inhibitoare selective ale zincului asupra proliferării celulare în carcinomul cu celule scuamoase esofagiene prin Orai1. Faseb. J. 2018; 32 (1): 404-416. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]331. Jurowski K., Szewczyk B., Nowak G., Piekoszewski W. Consecințele biologice ale deficitului de zinc în patomecanismele bolilor selectate. J. Biol. Inorg. Chem. 2014; 19 (7): 1069-1079. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]332. Acizi grași Calder PC Omega-3 și procese inflamatorii: de la molecule la om. Biochimie. Soc. Trans. 2017; 45 (5): 1105–1115. [ PubMed ] [ Google Scholar ]333. Calder PC Omega-3 acizi grași polinesaturați și procese inflamatorii: nutriție sau farmacologie? Fr. J. Clin. Farmacol. 2013; 75 (3): 645-662. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]334. Darwesh AM, Sosnowski DK, Lee TY, Keshavarz-Bahaghighat H., Seubert JM Insights asupra proprietăților cardioprotectoare ale n-3 PUFA împotriva bolilor cardiace ischemice prin modularea sistemului imunitar înnăscut. Chem. Biol. Interacționa. 2019; 308 : 20-44. [ PubMed ] [ Google Scholar ]335. Kris-Etherton PM, Harris WS, Appel LJ, Nutrition Committee Consumul de pește, ulei de pește, acizi grași omega-3 și boli cardiovasculare. Arterioscler. Tromb. Vasc. Biol. 2003; 23 (2): e20-30. [ PubMed ] [ Google Scholar ]336. Lee JH, O’Keefe JH, Lavie CJ, Harris WS Omega-3 acizi grași: beneficii cardiovasculare, surse și durabilitate. Nat. Pr. Cardiol. 2009; 6 (12): 753-758. [ PubMed ] [ Google Scholar ]337. Mozaffarian D., Lemaitre RN, King IB, Song X., Huang H., Sacks FM, Rimm EB, Wang M., Siscovick DS Plasma phospholipid cu lanț lung ω-3 acizi grași și mortalitate totală și cauză specifică în adulți mai în vârstă: un studiu de cohortă. Ann. Intern. Med. 2013; 158 (7): 515-525. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]338. Darwesh AM, Bassiouni W., Sosnowski DK, Seubert JM Acizii grași polinesaturați N-3 pot fi considerați un potențial tratament adjuvant pentru complicațiile cardiovasculare asociate COVID-19? Farmacol. Ther. 2020; 219 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]339. Paschou SA, Kosmopoulos M., Nikas IP, Spartalis M., Kassi E., Goulis DG Impactul obezității asupra asocierii dintre deficitul de vitamina D și bolile cardiovasculare. Nutrienți. 2019; 11 (10): 2458. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]340. Porto CM, Silva VL, da Luz JSB, Filho BM, da Silveira VM Asociere între deficiența de vitamina D și riscul de insuficiență cardiacă la vârstnici. ESC Insuficiență cardiacă. 2018; 5 (1): 63-74. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]341. Hughes DA, Norton R. Vitamina D și sănătatea respiratorie. Clin. Exp. Immunol. 2009; 158 (1): 20-25. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]342. Liu LC, Voors AA, van Veldhuisen DJ, van der Veer E., Belonje AM, Szymanski MK Starea vitaminei D și rezultatele la pacienții cu insuficiență cardiacă. Euro. J. Insuficiență cardiacă. 2011; 13 (6): 619–625. [ PubMed ] [ Google Scholar ]343. Cotogni P., Trombetta A., Muzio G., Maggiora M., Canuto RA Acidul omega-3 acid docosahexaenoic modulează eliberarea mediatorului inflamator în celulele alveolare umane expuse la lichidul de spălare bronhoalveolar al pacienților cu SDRA. BioMed Res. Int. 2015 2015. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]344. Mekov E., Slavova Y., Tsakova A., Genova M., Kostadinov D., Minchev D. Deficiența și insuficiența vitaminei D la pacienții cu BPOC spitalizați. Plus unu. 2015; 10 (6) [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]345. Martineau AR, Jolliffe DA, Hooper RL, Greenberg L., Aloia JF, Bergman P. Suplimentarea cu vitamina D pentru prevenirea infecțiilor acute ale tractului respirator: revizuire sistematică și meta-analiză a datelor individuale ale participanților. BMJ. 2017; 356 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]346. Moghaddassi M., Pazoki M., Salimzadeh A., Ramim T., Alipour Z. Asociația nivelului seric al deficitului de 25-hidroxi vitamina D și funcției pulmonare la indivizii sănătoși. Știință. Lumea J. 2018 2018. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]347. Mulrennan S., Knuiman M., Walsh JP, Hui J., Hunter M., Divitini M. Vitamina D și sănătatea respiratorie în studiul de îmbătrânire sănătoasă busselton. Respirologie.2018; 23 (6): 576-582. [ PubMed ] [ Google Scholar ]348. Brenner H., Holleczek B., Schöttker B. Insuficiență și deficiență de vitamina D și mortalitate prin boli respiratorii la o cohortă de adulți în vârstă: potențial pentru limitarea numărului de decese în timpul și dincolo de pandemia COVID-19? Nutrienți. 2020; 12 (8): 2488. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]349. Ilyas M., Agussalim A., Megawati M., Massi N., Djaharuddin I., Bakri S. Relația dintre nivelul vitaminei D și concentrația serică de TNF-α asupra severității bolii pulmonare obstructive cronice. Acces liber Maced J Med Sci. 2019; 7 (14): 2298-2304. [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]350. Patterson WL, al treilea, Georgel PT Întreruperea ciclului: rolul acizilor grași polinesaturați omega-3 în cancerele provocate de inflamație. Biochimie. Celula. Biol. 2014; 92 (5): 321-328. [ PubMed ] [ Google Scholar ]351. Niedermaier T., Gredner T., Kuznia S., Schöttker B., Mons U., Brenner H. Suplimentarea cu vitamina D a populației adulte în vârstă din Germania are potențialul de a economisi costuri de a preveni aproape 30 000 de decese cauzate de cancer pe an . Mol Oncol Înainte de tipar. 2021 [ Articol gratuit PMC ] [ PubMed ] [ Google Scholar ]

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166046/

Nivelurile scăzute de zinc la internarea clinică se asociază cu rezultate slabe în COVID-19

Marina Vogel-González , Marc Talló-Parra , Víctor Herrera-Fernández , Gemma Pérez-Vilaró , Miguel Chillón , Xavier Nogués , Silvia Gómez-Zorrilla , Inmaculada López-Montesinos , Judit Villar , Maria Luisa Sorli-Redó , Juan Pablo Horcajada , Natalia García-Giralt , Julio Pascual , Juana Díez , Rubén Vicente, 

 Vizualizați profilul ORCIDRobert Güerri-Fernández

doi:https://doi.org/10.1101/2020.10.07.20208645

Acest articol este o preimprimare și nu a fost revizuit de către colegi [ce înseamnă asta?]. Raportează noi cercetări medicale care nu au fost încă evaluate și, prin urmare, nu ar trebui utilizate pentru a ghida practica clinică.

Abstract

Context: Biomarkerii care prezic rezultatul bolii coronavirus-19 (COVID-19) la începutul infecției sunt de urgență necesari pentru a îmbunătăți prognosticul și tratamentul. Zincul echilibrează răspunsurile imune și are, de asemenea, o acțiune antivirală directă dovedită împotriva unor viruși. Important, deficitul de zinc (ZD) este o afecțiune frecventă la vârstnici și la persoanele cu boli cronice, două grupuri cu rezultate mai severe ale COVID-19. Ipotezăm că conținutul seric de zinc (SZC) influențează progresia bolii COVID-19 și, prin urmare, ar putea reprezenta un biomarker util.

Metode: Am efectuat un studiu observațional retrospectiv cu 249 de pacienți cu COVID-19 internați în Spitalul din Mar. Am studiat severitatea și progresia COVID-19 care au urmat SZC la internare. În paralel, am studiat replicarea SARS-CoV2 în linia celulară Vero E6 modificând concentrațiile de zinc.

Constatări:Studiul nostru demonstrează o corelație între nivelurile serice de zinc și rezultatul COVID-19. Nivelurile serice de zinc mai mici de 50 mcgg / dl la admitere s-au corelat cu o prezentare clinică mai proastă, timp mai lung pentru a ajunge la stabilitate și mortalitate mai mare. Rezultatele noastre in vitro indică faptul că nivelurile scăzute de zinc favorizează expansiunea virală în celulele infectate cu SARS-CoV2. Interpretare: SZC este un biomarker nou pentru a prezice rezultatul COVID-19. Încurajăm efectuarea de studii clinice randomizate pentru a studia suplimentarea cu zinc ca profilaxie potențială și tratament cu persoane cu risc de deficit de zinc.Rezultatele noastre in vitro indică faptul că nivelurile scăzute de zinc favorizează expansiunea virală în celulele infectate cu SARS-CoV2.

Declarație de interes concurent

Autorii nu au declarat niciun interes concurent.

Declarație de finanțare

Ministerul Spaniol al Științei și Inovării prin subvenții PID2019-106755RB-I00 / AEI / 10.13039 / 501100011033 către RV și PID2019-106959RB-I00 / AEI /10.13039/501100011033 către JD Institutional Maria de Maeztu Program pentru unități de excelență în cercetare și dezvoltare (CEX2018-000792 -M) către RV și JD și prin grantul SGR 909 din 2017 de la Secretaria de Universități și Recerca del Departament d Economia și Coneștere a Generalitat de Catalunya către JD. RGF a primit sprijin și finanțare de la Centrul de Investigare Biomedică în Roșu de Fragilitate și Învățare Saludabilă (CIBERFES) [Număr de subvenție CB16 / 10/00245] Fonduri FEDER și proiectul FIS de la Instituto de Salud Carlos III Ministerio de Ciencia e Innovacion [Număr de subvenție ( PI19 / 00019)]

Declarații de autor

Confirm că au fost respectate toate liniile directoare etice relevante și s-au obținut toate aprobările necesare IRB și / sau ale comitetului etic.

da

Detaliile IRB / organismului de supraveghere care au furnizat aprobarea sau scutirea pentru cercetarea descrisă sunt prezentate mai jos:

Comitetul de etică instituțională al Hospital del Mar din Barcelona a aprobat studiul și datorită naturii revizuirii retrospective a datelor și a renunțat la necesitatea consimțământului informat de la pacienți individuali (CEIm 2020/9352).

A fost obținut consimțământul necesar pacientului / participantului și au fost arhivate formularele instituționale corespunzătoare.

da

Înțeleg că toate studiile clinice și orice alte studii intervenționale prospective trebuie înregistrate la un registru aprobat de ICMJE, cum ar fi ClinicalTrials.gov. Confirm că un astfel de studiu raportat în manuscris a fost înregistrat și este furnizat ID-ul de înregistrare al procesului (notă: dacă se postează un studiu prospectiv înregistrat retrospectiv, vă rugăm să furnizați o declarație în câmpul ID-ul procesului care să explice de ce studiul nu a fost înregistrat în prealabil) .

da

Am urmat toate liniile directoare adecvate de raportare a cercetărilor și am încărcat listele de verificare relevante ale rapoartelor de cercetare ale rețelei EQUATOR și alte materiale pertinente ca fișiere suplimentare, dacă este cazul.

da

Hârtie în colecția de pre-tipăriri COVID-19 SARS-CoV-2 de la medRxiv și bioRxivDrepturi de autor Deținătorul drepturilor de autor pentru această preimprimare este autorul / finanțatorul, care a acordat medRxiv o licență pentru afișarea preimprimării în perpetuitate. Acesta este disponibil sub licența internațională CC-BY-NC-ND 4.0 .

zinc , hidroxiclorochină și azitromicină in tratarea covid19

Pacienți ambulatori COVID-19 – Tratament cu stratificare precoce a riscului cu zinc , hidroxiclorochină și azitromicină in doze mici : un studiu de caz retrospectiv

Martin Scholz * , Roland Derwand , Vladimir ZelenkoVersiunea 1: Primită: 30 iunie 2020 / Aprobată: 3 iulie 2020 / Online: 3 iulie 2020 (08:52:22 CEST)

Abstract

Obiectiv: Descrierea rezultatelor pacienților cu boală coronavirus 2019 (COVID-19) în ambulatoriu după tratamentul precoce cu zinc, doză mică de hidroxiclorochină și azitromicină (terapia triplă) dependentă de stratificarea riscului. 

Proiectare: studiu retrospectiv de serii de cazuri.

 Setare: practică generală. 

Participanți: 141 de pacienți cu COVID-19 cu infecții confirmate de laborator cu sindrom respirator acut sever coronavirus 2 (SARS-CoV-2) în anul 2020. 

Măsuri principale de rezultat: decizie de tratament stratificat de risc, rata spitalizării și decesul pentru toate cauzele. 

Rezultate:Din 335 de pacienți cu COVID-19 testați pozitiv PCR, 127 au fost tratați cu tripla terapie. 104 din 127 au îndeplinit criteriile definite de stratificare a riscului și au fost incluse în analiză. În plus, 37 de pacienți tratați și eligibili care au fost confirmați prin teste IgG au fost incluși în grupul de tratament (total N = 141). 208 din cei 335 de pacienți nu au îndeplinit criteriile de stratificare a riscului și nu au fost tratați. După 4 zile (mediană, IQR 3-6, disponibilă pentru N = 66/141) de debut al simptomelor, 141 de pacienți (vârsta mediană 58 de ani, IQR 40-67; 73% bărbați) au primit o rețetă pentru terapia triplă timp de 5 zile. Datele de referință publice independente de la 377 de pacienți COVID-19 confirmați din aceeași comunitate au fost utilizate ca control netratat. 4 din 141 pacienți tratați (2,8%) au fost spitalizați, ceea ce a fost semnificativ mai mic (p <0,001) comparativ cu 58 din 377 pacienți netratați (15.4%) (raport cote 0,16, 95% CI 0,06-0,5). Prin urmare, șansele de spitalizare a pacienților tratați au fost cu 84% mai mici decât în ​​grupul netratat.

Un pacient (0,7%) a decedat în grupul tratat comparativ cu 13 pacienți (3,5%) în grupul netratat (probabilitate 0,2, 95% CI 0,03-1,5; p = 0,16).

Nu au existat efecte secundare cardiace.

Concluzii: Tratamentul bazat pe stratificarea riscului a pacienților ambulatori cu COVID-19 cât mai devreme posibil după apariția simptomelor cu terapia triplă utilizată, inclusiv combinația de zinc cu doză mică de hidroxiclorochină, a fost asociată cu nr spitalizări semnificativ mai mici și de 5 ori mai puține decese din toate cauzele.

Domenii de subiect

Cum se citează: Scholz, M .; Derwand, R .; Zelenko, V. Pacienții ambulatori COVID-19 – Tratament precoce stratificat cu risc cu hidroxiclorochină cu doză mică de zinc și azitromicină: un studiu de caz retrospectiv. Preprints 2020 , 2020070025 (doi: 10.20944 / preprints202007.0025.v1). Scholz, M .; Derwand, R .; Zelenko, V. Pacienții ambulatori COVID-19 – Tratament precoce stratificat cu risc cu hidroxiclorochină cu doză mică de zinc și azitromicină: un studiu de caz retrospectiv. Preprints 2020, 2020070025 (doi: 10.20944 / preprints202007.0025.v1).Copie

Drepturi de autor: Acesta este un articol cu ​​acces liber distribuit sub Licența de atribuire Creative Commons care permite utilizarea, distribuția și reproducerea nelimitată în orice mediu, cu condiția ca lucrarea originală să fie citată în mod corespunzător.

https://www.preprints.org/manuscript/202007.0025/v1

zinc in tratarea covid19

Hidroxiclorochină și azitromicină plus zinc versus hidroxiclorochină și azitromicină singure: rezultate la pacienții spitalizați cu COVID-19

Philip Carlucci , Tania Ahuja , Christopher M Petrilli , Harish Rajagopalan , Simon Jones , Joseph Rahimian

Context: COVID-19 a apărut rapid ca o infecție pandemică care a provocat mortalitate semnificativă și pierderi economice. Terapii potențiale și mijloace de profilaxie împotriva COVID-19 sunt necesare urgent pentru a combate această infecție nouă. Ca rezultat al dovezilor in vitro care sugerează că sulfatul de zinc poate fi eficient împotriva COVID-19, spitalele noastre au început să utilizeze sulfatul de zinc ca terapie suplimentară la hidroxiclorochină și azitromicină. Am efectuat un studiu observațional retrospectiv pentru a compara rezultatele spitalului în rândul pacienților care au primit hidroxiclorochină și azitromicină plus zinc versus doar hidroxiclorochină și azitromicină.

Metode: Datele au fost colectate din dosarele medicale electronice pentru toți pacienții tratați cu date de admitere variind de la 2 martie 2020 până la 5 aprilie 2020. Caracteristicile clinice inițiale la prezentare,medicamentele administrate în timpul spitalizării și rezultatele spitalului au fost înregistrate. Pacienții din studiu au fost excluși dacă au fost tratați cu alte medicamente de investigație.

Rezultate: Adăugarea sulfatului de zinc nu a afectat durata spitalizării, durata ventilației sau durata ICU/ATI. În analizele univariate, sulfatul de zinc a crescut frecvența pacienților externați la domiciliu și a scăzut nevoia de ventilație, internare la ATI și mortalitate sau transfer la hospice pentru pacienții care nu au fost niciodată internați la ATI. După ajustarea timpului în care s-a adăugat sulfat de zinc la protocolul nostru, o frecvență crescută a externării la domiciliu (OR 1,53, 95% CI 1,12-2,09) reducerea mortalității sau transferul la hospice a rămas semnificativă (OR 0,449, 95% CI 0,271 -0.744).

Concluzie:Acest studiu oferă primele dovezi in vivo că sulfatul de zinc în combinație cu hidroxiclorochina poate juca un rol în managementul terapeutic pentru COVID-19.

nota explicativa:

Autorii au comparat rezultatele a 411 pacienți cărora li s-a administrat o combinație de HCQ (400 mg OD urmată de 200 mg BD pe cale orală timp de cinci zile), AZT (500 mg OD pe cale orală, durata neraportată) și zinc (220 mg BD pe cale orală timp de cinci zile) , cu 521 de pacienți care au primit HCQ și AZT fără zinc. Autorii au exclus pacienții care au primit suplimentar alte tratamente experimentale COVID-19, cum ar fi lopinavir / ritonavir.


Declarație de interes concurent

Autorii nu au declarat niciun interes concurent.

Studiu clinic

acesta este un studiu observațional retrospectiv și, prin urmare, nu un studiu clinic

Declarație de finanțare

Nu a fost prevăzută nicio finanțare pentru această lucrare.

Declarații de autor

Au fost respectate toate orientările etice relevante; au fost obținute toate aprobările necesare ale IRB și / sau ale comitetului de etică, iar detaliile IRB / organismul de supraveghere sunt incluse în manuscris.

da

A fost obținut consimțământul necesar pacientului / participantului și au fost arhivate formularele instituționale corespunzătoare.

da

Înțeleg că toate studiile clinice și orice alte studii intervenționale prospective trebuie înregistrate la un registru aprobat de ICMJE, cum ar fi ClinicalTrials.gov. Confirm că un astfel de studiu raportat în manuscris a fost înregistrat și este furnizat ID-ul de înregistrare al procesului (notă: dacă se postează un studiu prospectiv înregistrat retrospectiv, vă rugăm să furnizați o declarație în câmpul ID-ul procesului care să explice de ce studiul nu a fost înregistrat în prealabil) .

da

Am urmat toate liniile directoare adecvate de raportare a cercetărilor și am încărcat listele de verificare relevante ale rapoartelor de cercetare EQUATOR Network și alte materiale pertinente ca fișiere suplimentare, dacă este cazul.

da

doi:https://doi.org/10.1101/2020.05.02.20080036

https://www.medrxiv.org/content/10.1101/2020.05.02.20080036v1

Vitamina C protejează împotriva coronavirusului

 

TOATE articolele de pe acest blog au rol pur informativ ; acest blog nu vinde si nu doreste sa se vanda/promoveze diverse produse.

Scopul principal este informarea populatiei bazata pe fapte reale si in special pe REZULTATELE STUDIILOR CLINICE (adica studii efectuate de doctori  pe oameni) .

In ceea ce priveste NOUL CORONAVIRUS 2019/ CoViD19 , intr-ucat nu exista inca un tratament care sa garanteze vindecarea( la fel cum nici in cancer nu exista asa ceva!) , informatiile prezentate pe acest blog urmaresc sa aduca la cunostiinta cititorului despre progresele/REZULTATELE realizate de comunitatea medicala internationala – in mod specific ce au facut medicii din zonele care au depasit impasul CoViD19  – Wuhan ,China- ce tratamente a aplicat si care a fost rezultatul obtinut; cu precadere vor fi prezentate acele tratamente care au obtinut rezultate: exemple vitamina C intravenos aplicata cu succes de doctorii din China pe bolnavii de pneumonie generata de acest nou corona virus si recomandata de guvernul de la Shanghai  , sau studiul clinic din Franta  – bazat pe acesta si metoda de tratare adoptata oficial in Romania este tot clorochina ;

Aceste studii clinice NU sunt efectuate si nici finantate de mine ci de medicii respectivi. Imi doresc ca oamenii sa nu cada in plasa isteriei si a temerilor exagerate; rezultatele CLINICE incep sa apara si atat bolnavii cat si mai ales medicii care ii trateaza trebuie sa stie despre cele mai noi si eficiente tratamente si lucruri ce pot fi de real folos .

Cele de aici NU inlocuiesc tratamentul medical

Urmatoarele informatii reprezinta traducerea mot a mot  a unei pagini de pe comunitatea medicala internationala de medicina ortomoleculara orthomolecular.org

articol scris de dr Andrew W. Saul si zecile de medici din intreaga lume ce practica medicina ortomoleculara
(OMNS, 26 ianuarie 2020) Pandemia coronavirusului poate fi încetinită sau oprită dramatic, cu utilizarea imediată pe scară largă a unor doze mari de vitamina C. Medicii au demonstrat puternica acțiune antivirală a vitaminei C de zeci de ani. A lipsit acoperirea mediatică a acestei abordări eficiente și de succes împotriva virusurilor, în general, și în special a coronavirusului.

Este foarte important să se maximizeze capacitatea anti-oxidativă a organismului și imunitatea naturală pentru a preveni și minimiza simptomele atunci când un virus atacă corpul uman. Mediul gazdă este crucial. Prevenirea este, evident, mai ușoară decât tratarea bolilor severe. Dar tratați în serios bolile grave. Nu ezitați să solicitați asistență medicală. Nu este o alegere fie. Vitamina C poate fi folosită chiar împreună cu medicamentele atunci când sunt indicate.

„Nu am vazut inca gripa care nu a fost vindecata sau ameliorata in mod semnificativ prin doze masive de vitamina C.”

(Robert F. Cathcart, MD)

Medicii Serviciului de știri pentru medicină ortomoleculară și Societatea Internațională pentru Medicină Ortomoleculară cer o metodă bazată pe nutrienți pentru a preveni sau minimiza simptomele viitoarelor infecții virale. Următoarele niveluri suplimentare ieftine sunt recomandate adulților; pentru copii le reduce în proporție de greutatea corporală:

Vitamina C: 3.000 de miligrame (sau mai multe) zilnic, în doze divizate.

Vitamina D3: 2.000 de unități internaționale zilnic. (Începeți cu 5.000 UI / zi timp de două săptămâni, apoi reduceți la 2.000)

Magneziu: 400 mg pe zi (sub formă de citrat, malat, chelat sau clorură)

Zinc: 20 mg pe zi

Seleniu: 100 mcg (micrograme) zilnic

S-a demonstrat că vitamina C [1] , Vitamina D [2] , magneziu [3] , zinc [4] și seleniu [5] consolidează sistemul imunitar împotriva virușilor.

Baza folosirii unor doze mari de vitamina C pentru prevenirea și combaterea bolilor cauzate de virus poate fi identificată spre succesul timpuriu al vitaminei C împotriva poliomielitei, raportat pentru prima dată la sfârșitul anilor 1940. [6] Mulți oameni nu știu, chiar sunt surprinși, să învețe acest lucru. Mai multe dovezi clinice construite de-a lungul deceniilor, ducând la un protocol anti-virus publicat în 1980 [7].

Este important să ne amintim că prevenirea și tratarea infecțiilor respiratorii cu cantități mari de vitamina C sunt bine stabilite . Cei care cred că vitamina C are în general un merit, dar dozele masive sunt ineficiente sau cumva dăunătoare, vor face bine să citească singure lucrările originale. A renunța la munca acestor medici, pur și simplu pentru că au avut succes cu mult timp în urmă, înfățișează o întrebare mai importantă: de ce beneficiile experienței lor clinice nu au fost prezentate publicului de către autoritățile guvernamentale responsabile, în special în fața unei pandemii virale?
Referințe:
1. Vitamina C:

Cazul HS (2018) la întrebările răspuns la vitamina C. Serviciul de știri pentru medicină ortomoleculară , http://orthomolecular.org/resources/omns/v14n12.shtml .

Gonzalez MJ, Berdiel MJ, Duconge J (2018) Doză mare de vitamina C și gripă: Un raport de caz. J Orthomol Med. Iunie 2018, 33 (3). https://isom.ca/article/high-dose-vitamin-c-influenza-case-report .

Gorton HC, Jarvis K (1999) Eficacitatea vitaminei C în prevenirea și ameliorarea simptomelor infecțiilor respiratorii induse de virus. J Manip Physiol Ther , 22: 8, 530-533. https://www.ncbi.nlm.nih.gov/pubmed/10543583

Hemilä H (2017) Vitamina C și infecții. Nutrienți . 9 (4). PII: E339. https://www.ncbi.nlm.nih.gov/pubmed/28353648 .

Hickey S, Saul AW (2015) Vitamina C: povestea reală. Pub Health Basic. ISBN-13: 978-1591202233.

Levy TE (2014) Impactul clinic al vitaminei C. Serviciul de știri pentru medicină ortomoleculară , http://orthomolecular.org/resources/omns/v10n14.shtml

OMNS (2007) Vitamina C: un tratament extrem de eficient pentru răceli. http://orthomolecular.org/resources/omns/v03n05.shtml .

OMNS (2009) Vitamina C ca antiviral http://orthomolecular.org/resources/omns/v05n09.shtml .

Taylor T (2017) Vitamina C material: de unde să începi, ce să urmărești. OMNS , http://www.orthomolecular.org/resources/omns/v13n20.shtml .

Yejin Kim, Hyemin Kim, Seyeon Bae și colab. (2013) Vitamina C este un factor esențial în răspunsurile imunitare anti-virale prin producerea de interferon-α / β în stadiul inițial al infecției cu virusul gripal A (H3N2). Net imun. 13: 70-74. https://www.ncbi.nlm.nih.gov/pubmed/23700397 .

2. Vitamina D:

Cannell JJ, Vieth R, Umhau JC și colab. (2006) Influenza epidemica si vitamina D. Epidemiol Infect. 134: 1129-1140. https://www.ncbi.nlm.nih.gov/pubmed/16959053 .

Cannell JJ, Zasloff M, Garland CF și colab. (2008) privind epidemiologia gripei. Virol J. 5:29. https://www.ncbi.nlm.nih.gov/pubmed/16959053 .

Ginde AA, Mansbach JM, Camargo CA Jr. (2009) Asocierea între nivelul seric 25-hidroxivitamină D și infecția tractului respirator superior în cadrul celui de-al treilea studiu național de sănătate și nutriție. Arch Intern Med. 169: 384-390. https://www.ncbi.nlm.nih.gov/pubmed/19237723 .

Martineau AR, Jolliffe DA, Hooper RL și colab. (2017) Suplimentarea cu vitamina D pentru a preveni infecțiile acute ale tractului respirator: revizuirea sistematică și metaanaliza datelor individuale ale participanților. BMJ. 356: i6583. https://www.ncbi.nlm.nih.gov/pubmed/28202713 .

Urashima M, Segawa T, Okazaki M și colab. (2010) Studiu aleatoriu de suplimentare cu vitamina D pentru a preveni gripa A sezonieră la școlari. Am J Clin Nutr. 91: 1255-1260. https://www.ncbi.nlm.nih.gov/pubmed/20219962 .

von Essen MR, Kongsbak M, Schjerling P și colab. (2010) Vitamina D controlează semnalizarea receptorului de antigen a celulelor T și activarea celulelor T umane. Nat Immunol. 11: 344-349. https://www.ncbi.nlm.nih.gov/pubmed/20208539 .

3. Magneziu:

Dean C (2017) magneziu. OMNS , http://www.orthomolecular.org/resources/omns/v13n22.shtml

Dean C. (2017) Miracolul de magneziu. Ediția a II-a, Cărți Ballantine. ISBN-13: 978-0399594441.

Levy TE (2019) Magneziu: boala inversă. Medfox Pub. ISBN-13: 978-0998312408

4. Zinc:

Fraker PJ, King LE, Laakko T, Vollmer TL. (2000) Legătura dinamică între integritatea sistemului imunitar și statutul de zinc. J Nutr. 130: 1399S-406S. https://www.ncbi.nlm.nih.gov/pubmed/10801951 .

Liu MJ, Bao S, Gálvez-Peralta M și colab. (2013) ZIP8 reglementează apărarea gazdelor prin inhibarea NF-кB mediată de zinc. Republica celulară 3: 386-400. https://www.ncbi.nlm.nih.gov/pubmed/23403290 .

Mocchegiani E, Muzzioli M. (2000) Aplicarea terapeutică a zincului în virusul imunodeficienței umane împotriva infecțiilor oportuniste. J Nutr. 130: 1424S-1431S. https://www.ncbi.nlm.nih.gov/pubmed/10801955 .

Shankar AH, Prasad AS. (1998) Zincul și funcția imunitară: baza biologică a rezistenței modificate la infecție. Am J Clin Nutr. 68: 447S-463S. https://www.ncbi.nlm.nih.gov/pubmed/9701160 .

5. Seleniu:

Beck MA, Levander OA, Handy J. (2003) Deficiență de seleniu și infecție virală. J Nutr. 133: 1463S-1467S. https://www.ncbi.nlm.nih.gov/pubmed/12730444 .

Hoffmann PR, Berry MJ. (2008) Influența seleniului asupra răspunsurilor imune. Mol Nutr Food Res. 52: 1273-1280. https://www.ncbi.nlm.nih.gov/pubmed/18384097 .

Steinbrenner H, Al-Quraishy S, Dkhil MA și colab. (2015) Seleniu dietetic în terapia adjuvantă a infecțiilor virale și bacteriene. Adv Nutr. 6: 73-82. https://www.ncbi.nlm.nih.gov/pubmed/25593145 .

6. Klenner FR. Tratamentul poliomielitei și a altor boli cu virus cu vitamina C. J South Med Surg 1949, 111: 210-214. http://www.doctoryourself.com/klennerpaper.html .

7. RF Cathcart. Metoda de determinare a dozelor adecvate de vitamina C pentru tratamentul bolilor prin titrarea la toleranța intestinală. Asistenții australieni J 1980, 9 (4): 9-13. http://www.doctoryourself.com/titration.html
Medicina nutrițională este Medicina ortomoleculară
Medicamentul ortomolecular folosește terapie nutritivă sigură și eficientă pentru combaterea bolilor. Pentru mai multe informații: http://www.orthomolecular.org
Găsiți un doctor
Pentru a localiza un medic ortomolecular lângă dvs.: http://orthomolecular.org/resources/omns/v06n09.shtml
Serviciul de știri de medicină ortomoleculară revizuit de la egal la egal este o resursă informațională non-profit și non-comercială.
Comitetul de revizuire editorial:
Ilyès Baghli, MD (Algeria)
Ian Brighthope, MD (Australia)
Prof. Gilbert Henri Crussol (Spania)
Carolyn Dean, MD, ND (SUA)
Damien Downing, MD (Regatul Unit)
Michael Ellis, MD (Australia)
Martin P. Gallagher, MD, DC (SUA)
Michael J. Gonzalez, NMD, D.Sc., Ph.D. (Puerto Rico)
William B. Grant, doctorat. (STATELE UNITE ALE AMERICII)
Tonya S. Heyman, MD (SUA)
Suzanne Humphries, MD (SUA)
Ron Hunninghake, MD (SUA)
Michael Janson, MD (SUA)
Robert E. Jenkins, DC (SUA)
Bo H. Jonsson, MD, Ph.D. (Suedia)
Jeffrey J. Kotulski, DO (SUA)
Peter H. Lauda, ​​MD (Austria)
Thomas Levy, MD, JD (SUA)
Homer Lim, MD (Filipine)
Stuart Lindsey, Pharm.D. (STATELE UNITE ALE AMERICII)
Victor A. Marcial-Vega, MD (Puerto Rico)
Charles C. Mary, Jr., MD (SUA)
Mignonne Mary, MD (SUA)
Iunie Matsuyama, MD, Ph.D. (Japonia)
Dave McCarthy, MD (SUA)
Joseph Mercola, DO (SUA)
Jorge R. Miranda-Massari, Pharm.D. (Puerto Rico)
Karin Munsterhjelm-Ahumada, MD (Finlanda)
Tahar Naili, MD (Algeria)
W. Todd Penberthy, doctorat. (STATELE UNITE ALE AMERICII)
Dag Viljen Poleszynski, doctorat (Norvegia)
Jeffrey A. Ruterbusch, DO (SUA)
Gert E. Schuitemaker, doctorat (Olanda)
Thomas L. Taxman, MD (SUA)
Jagan Nathan Vamanan, MD (India)
Garry Vickar, MD (SUA)
Ken Walker, MD (Canada)
Anne Zauderer, DC (SUA)

Andrew W. Saul, doctorat. (SUA), redactor-șef
Editor, Ediția japoneză: Atsuo Yanagisawa, MD, Ph.D. (Japonia)
Robert G. Smith, doctorat. (SUA), redactor asociat
Helen Saul Case, MS (SUA), redactor asistent
Michael S. Stewart, B.Sc.CS (SUA), redactor tehnologic
Jason M. Saul, JD (SUA), consultant juridic

Comentarii și contact media: drsaul@doctoryourself.com OMNS salută, dar nu este în măsură să răspundă la e-mailurile individuale ale cititorului. Comentariile cititorilor devin proprietatea OMNS și pot fi sau nu utilizate pentru publicare.
Pentru a vă abona gratuit: http://www.orthomolecular.org/subscribe.html

Pentru a vă dezabona de la această listă: http://www.orthomolecular.org/unsubscribe.html

Rolul vitaminelor, mineralelor și suplimentelor în prevenirea și gestionarea cancerului de prostată

 

Vincent M. Santillo; Franklin C. Lowe

Departamentul de Urologie, Spitalul St. Luke’s-Roosevelt și Departamentul de Urologie, Universitatea Columbia, Colegiul Medicilor și Chirurgilor, New York, NY, SUA

Adresa de corespondenta


ABSTRACT

Autorii revizuiesc literatura actuală privind medicamentele complementare și alternative utilizate cel mai frecvent de pacienții cu cancer de prostată și cei cu risc pentru boală. Produsele acoperite sunt vitamina E, vitamina A, seleniu, zinc, soia, licopen, suc de rodie, ceai verde și acizi grași omega-3. Nu există nicio dovadă definitivă că vreunul dintre suplimentele nutritive discutate poate afecta cursul cancerului de prostată sau dezvoltarea acestuia. Autorii sunt de părere că pur și simplu luarea unui multivitamin standard zilnic ar trebui să fie suficient pentru a se asigura că pacienții au nivelurile adecvate de vitamine și minerale, fără a risca utilizarea excesivă de vitamine, minerale și suplimente care pot duce la numeroase efecte secundare negative.

Cuvinte cheie: neoplasme prostatice; chemoprevention; Medicina complementară; suplimente de dieta; licopen; acizi grasi omega-3


INTRODUCERE

În ultimul deceniu a existat o creștere a conștientizării și utilizării medicamentelor complementare și alternative (CAM). Sondajele privind populația indică faptul că această creștere se datorează dorinței oamenilor de a fi proactivi în managementul sănătății lor, precum și a sentimentului că orice „natural” este în mod inerent sigur (1,2). În ceea ce privește cancerul de prostată, cea mai mare utilizare a CAM este printre cei care au fost deja diagnosticați și tratați pentru cancerul de prostată, iar pacienții cu cancer progresiv de prostată au mai multe șanse de a utiliza CAM decât cei cu boală stabilă (3). Cu toate acestea, datele care susțin această exuberanță a utilizării sunt contradictorii în cel mai bun caz. Acest articol va analiza datele disponibile curente ale produselor CAM cele mai frecvent utilizate.

VITAMINA E

Vitamina E (de fapt un grup de 4 tocoferoli și 4 tocotrienoli) este cel mai popular supliment folosit de bărbați. Se estimează că 15% până la 17% dintre bărbați iau acest supliment (4,5). Deoarece este o vitamină solubilă în grăsimi, sursele alimentare bune tind să fie alimente bogate în uleiuri derivate din plante: avocado, nuci, ouă, unt de arahide, soia și cereale pentru micul dejun gata de consumat. Uleiurile de gătit tind să fie cea mai mare sursă de vitamina E din dietă (6). Doza zilnică recomandată (RDA) este de 15 mg (22,5 UI). Nivelurile plasmatice de vitamina E sunt saturabile la aproximativ 800 UI.

În general, vitamina E este considerată sigură și nu a arătat proprietăți mutagene, în ciuda anilor de megadozare. Cu toate acestea, recent, sa dovedit că suplimentele de vitamina E cu o doză mare ( > 400 UI / zi) cresc un risc crescut de evenimente cardiovasculare (7). Alfa-tocoferolii (cea mai abundentă formă naturală de vitamina E) scad, de asemenea, agregarea plachetară și crește astfel riscul de sângerare. Pacienții trebuie sfătuiți să rețină aportul de vitamina E cu 10 până la 14 zile înainte de biopsia prostatei, prostatectomia radicală, semănarea radioactivă sau orice altă procedură chirurgicală (6).

Studii de laborator

Multe studii in vitro pe o varietate de linii celulare de cancer uman au arătat că vitamina E poate avea un impact benefic asupra carcinogenezei. Cea mai cunoscută funcție a vitaminei E este ca un antioxidant, detoxifierea radicalilor oxidanti care apar ca subproduse nedorite în timpul metabolismului normal. Acești radicali oxidanți pot interfera cu multe mecanisme celulare importante în creșterea și reglarea celulelor, inclusiv acele mecanisme implicate cu carcinogeneza prostatei (6). Alte roluri pentru vitamina E includ ca antiprostaglandină; se crede că prostaglandinele au un rol în carcinogeneza prostatei (9).

Studiile in vitro asupra liniilor de celule ale cancerului de prostată au arătat, de asemenea, că vitamina E induce oprirea ciclului celular în celulele canceroase de prostată la nivel fiziologic, precum și reglarea expresiei p27, un regulator al ciclului celular (9).

Studii clinice

Impactul potențial al consumului de vitamina E asupra dezvoltării cancerului de prostată a fost demonstrat pentru prima dată în rezultatele Studiului de prevenire a cancerului alfa-tocoferolului, beta-carotenului (studiu ATBC) (10). Acesta a fost un studiu randomizat, dublu-orb, pe 29.133 de fumători de sex masculin cărora li s-a administrat vitamina E (50 mg), beta-caroten (20 mg), ambele substanțe sau un placebo zilnic timp de 5 până la 8 ani pentru a evalua impactul acești 2 nutrienți pentru prevenirea cancerului pulmonar. Deși incidența cancerului pulmonar nu a fost diminuată, fumătorii de sex masculin care au luat vitamina E au avut o reducere dramatică de 32% a cancerului de prostată și o reducere de 41% a deceselor prin cancer de prostată la 7 ani (10). Faptul că studiul ATBC nu a fost conceput ca un studiu de prevenire a cancerului de prostată, lasă deschisă posibilitatea ca rezultatele să reprezinte o schemă statistică.

Răspunsul la întrebarea dacă rezultatul a fost sau nu o coincidență este acum testat în Studiul de prevenire a cancerului cu seleniu și vitamina E (SELECT). Studiul SELECT testează vitamina E (400 mg de acetat de alfa-tocoferil racemic) și seleniu (200 mcg de L-selenometionină) la 32 400 de bărbați americani. Randomizarea va fi distribuită în mod egal între 4 brațe de studiu (seleniu, vitamina E, seleniu și vitamina E și placebo). Studiul este conceput pentru a permite detectarea unei reduceri de 25% a incidenței cancerului de prostată din combinația de seleniu și vitamina E, comparativ cu nutrienții singuri. Efectul de combinație al seleniului și al vitaminei E ar putea fi sinergic, așa cum s-a demonstrat în experimentele in vitro în care cele două suplimente au obținut împreună o mai mare inhibare a creșterii celulare decât oricare singur (11). Procesul SELECT a ajuns la completul lor complet de bărbați în aprilie 2004. Datele inițiale sunt anticipate în 2006, cu rezultate finale în 2013 (12).

VITAMINA A

Vitamina A este o vitamină solubilă în grăsimi foarte versatilă, care are roluri în mai multe procese ale corpului. Alocația dietetică recomandată pentru bărbați este de 900 mcg și se estimează că aproximativ 3% dintre bărbați iau această vitamină ca supliment.

Conform cercetărilor epidemiologice și clinice, vitamina A nu este asociată cu riscul de cancer de prostată (13). Relația a fost ipotezată pe baza rolului pe care îl joacă retinoizii în reglarea diferențierii de creștere și a apoptozei celulelor normale și maligne. În studiul de eficiență a beta-carotenului și retinolului (CARET), un studiu de chemoprevenție controlat cu 7 ani, randomizat, dublu orb, controlat cu placebo, a testat combinația de beta-caroten (30 mg) și retinil palmitat (vitamina A) (25,000) UI) luate zilnic împotriva placebo la 12.025 de bărbați și 6.289 de femei cu risc ridicat de a dezvolta cancer pulmonar, nu a existat nicio diferență în incidența cancerului de prostată între acei bărbați care primesc vitamina A și un placebo (14). În timp ce obiectivul principal al studiului a fost reducerea incidenței cancerului pulmonar la o populație cu risc ridicat de boală, datele sunt convingătoare că vitamina A nu va fi probabil un agent chimiopreventiv pentru cancerul de prostată.

SELENIU

Seleniul este un oligoelement care apare atât în ​​forme organice, cât și în forme anorganice. Forma organică intră prin lanțul alimentar prin consumul de plante cultivate în sol care conțin forma anorganică. Se găsește în fructe de mare, carne și cereale, iar cantitatea variază în funcție de cantitatea prezentă în sol. Se estimează că 9% până la 10% dintre bărbați iau acest supliment (4,5). RDA este de 55 mcg și nivelul tolerabil de admisie superioară (UL) pentru adulți este de 400 mcg. Un exces de seleniu poate afecta activitatea celulelor ucigătoare naturale, poate afecta sinteza hormonilor tiroidieni și metabolismul hormonului de creștere și al factorului de creștere asemănător insulinei și are, de asemenea, efecte dermatologice, cum ar fi pierderea unghiilor și a părului și dermatita (15).

Proprietăți anticancerigene ale seleniului

Metoda exactă prin care seleniul afectează carcinogeneza este necunoscută, dar rolul său de antioxidant (atât singur, cât și încorporat ca cofactor în enzimele antioxidante) a fost un domeniu de cercetare. Alte efecte potențiale includ antiproliferarea, inducerea apoptozei, modularea nivelurilor de androgeni și efectele asupra funcției imunitare (16,17).

Studii clinice

În timp ce multe studii epidemiologice au arătat dovezi ale unei legături între nivelurile scăzute de seleniu și incidența crescută a cancerului, studiul Prevenției Nutriționale a Cancerului (NPC) a fost cel care a evidențiat relația sa cu cancerul de prostată. Studiul NPC de 1312 bărbați și femei a fost un studiu randomizat de 200 mcg de seleniu zilnic, conceput pentru a testa dacă o astfel de suplimentare poate reduce riscul de cancer de piele non-melanom recurent (18). Deși suplimentarea cu seleniu nu a avut efect asupra cancerului de piele, la sfârșitul studiului, o analiză a celor 457 de bărbați care au primit suplimente a arătat o incidență semnificativ mai mică a cancerului de prostată decât acei 470 de bărbați care au primit un placebo (cu o monitorizare medie de mai mult de 7 ani). Printre bărbații cu valori PSA de bază mai mici sau egale cu 4 ng / ml, rezultatele au arătat o reducere semnificativă de 65% a incidenței cancerului de prostată cu suplimentarea cu seleniu. Acei participanți cu valori PSA mai mari de 4 ng / ml nu au arătat nicio reducere a incidenței. Atunci când datele din testul NPC sunt evaluate pe baza nivelului de seleniu de la nivelul inițial, acei bărbați în tertilele cele mai mici și mijlocii ( < 123,2 ng / ml) au arătat reduceri semnificative ale incidenței de 86% și, respectiv, 61%. Cercetătorii au evaluat, de asemenea, o cohortă din Studiul de urmărire a profesioniștilor din domeniul sănătății, de 51.529 de bărbați de peste 8 ani, care a arătat că atunci când 181 de subiecți cu caz de cancer de prostată avansat au fost segregați în cinci grupuri bazate pe nivelurile inițiale de seleniu, acei bărbați aflați în studiu în cea mai mare quintilă a nivelului de seleniu a avut un risc cu 51% mai mic de cancer de prostată avansat decât bărbații cu cea mai mică chintilă a nivelului de seleniu (19). Până când rezultatele testului SELECT sunt disponibile, se pare că doar cei cu un nivel scăzut de seleniu (acest lucru ar trebui să fie testat mai întâi) sunt candidații adecvați pentru suplimentarea cu mineralul.

ZINC

Zincul este un mineral esențial care acționează ca cofactor pentru mai mult de șaptezeci de enzime. ADR pentru bărbați este de 11 mg pe zi și aproximativ 7% până la 8% dintre bărbați raportează că o iau (4,5). Zincul la niveluri ridicate poate fi toxic; aporturi de 150 până la 450 mg pe zi au fost asociate cu statut de cupru scăzut, funcție modificată a fierului, funcție imunitară redusă, niveluri reduse de lipoproteine ​​cu densitate ridicată și căderea părului (20). La rândul său, starea scăzută de cupru poate provoca o anemie sideroblastică, leucopenie și neutropenie (21). Mai important, utilizarea unei doze mai mari de 100 mg / zi pare să crească probabilitatea de cancer avansat de prostată (22).

O mare parte a interesului pentru zinc ca agent pentru tratamentul și prevenirea cancerului de prostată se datorează studiilor care au arătat o reducere marcată a nivelului de zinc în țesuturile prostatei în celulele canceroase de prostată față de celulele normale ale prostatei (23). În țesutul prostatic normal, zincul acționează ca un inhibitor al unei enzime (m-aconitaza), care face parte din ciclul Krebs. Odată cu inhibarea eliminată de nivelurile scăzute de zinc, celulele maligne sunt acum capabile să finalizeze ciclul Krebs și să treacă de la celule epiteliale secretoare ineficiente din punct de vedere energetic la celule eficiente din punct de vedere energetic (24).

Din păcate, înlocuirea acestui zinc prostatic intracelular nu este la fel de simplă ca și ingerarea acestuia: nivelurile excesive de zinc intestinal reglează absorbția zincului și, prin urmare, suplimentele orale de zinc nu au niciun efect asupra nivelului de zinc la nivelul prostatei (25). Zincul este transportat activ prin membrana celulelor prostatei și există dovezi că reglarea în jos a transportatorilor implicați este o cauză a absorbției reduse a zincului și această schimbare a expresiei genice poate fi un factor în dezvoltarea cancerului de prostată. Cercetările au arătat că hormonii de testosteron și prolactină pot crește absorbția de zinc în celulele prostatei, dar nu s-au efectuat studii umane despre acest efect (24).

Studii epidemiologice

Studiile asupra cancerului de zinc și de prostată au fost neconcludente (26). Unele studii au sugerat că un nivel ridicat de zinc intraprostatic poate proteja împotriva carcinogenezei prostatei, în timp ce alte studii arată că poate crește riscul, facilitând enzimele considerate a fi responsabile pentru proliferarea nelimitată a celulelor tumorale (22).

Într-o analiză de 14 ani de date privind o cohortă de 46,974 de bărbați din Studiul de urmărire a profesioniștilor în sănătate, s-a observat că aportul suplimentar de zinc în doze de până la 100 mg / zi nu a fost asociat cu un risc crescut de cancer de prostată (22 ). Cu toate acestea, bărbații care au consumat mai mult de 100 mg / zi au avut un risc relativ de cancer avansat de prostată cu 2,29 mai mare decât nonusers. Astfel, suplimentarea cu zinc ar putea promova dezvoltarea cancerului de prostată. Zincul obținut din surse alimentare nu a fost asociat cu riscul de cancer de prostată (22).

SOIA

Rolul soia și efectele benefice pe care fitoestrogenii (în special izoflavonoizii) pe care le conține asupra cancerului de prostată au fost un obiectiv al cercetărilor recente. Se estimează că doar 4% până la 8% dintre bărbați folosesc soia ca supliment (4,5). O mare parte din cercetare s-a concentrat pe două izoflavone în special, genisteina și daidzein.

Studii epidemiologice

Cercetarea urmărește să ofere înțelegere studiilor epidemiologice care au arătat o incidență mai mică a cancerului de prostată la populațiile cu diete bogate în produse de soia (27). S-a raportat că, în timp ce bărbații chinezi și japonezi au avut o incidență mai mică de cancer de prostată decât bărbații născuți în SUA, incidența în populația imigranților asiatici din Statele Unite este în conformitate cu ratele de incidență din SUA (28). Soia este de interes ca un posibil motiv, deoarece dieta medie asiatică include de zece ori mai mult decât cantitatea de produse de soia consumate în dieta tipică americană (27). Consumul de izoflavonă este de aproximativ 50 mg / zi în Asia față de 2 până la 3 mg / zi în Statele Unite (27). Un studiu privind obiceiurile alimentare a 12.395 de adventiști americani din ziua a șaptea, a demonstrat o reducere de 70% a riscului de cancer de prostată la acei bărbați care au consumat lapte de soia mai mult de o dată pe zi (29).<